
© NCC Group 2019. All rights reserved

T1: Secure Programming
for Embedded Systems

NorthSec 2019

© NCC Group 2019. All rights reserved

Developing for Embedded
Systems

© NCC Group 2019. All rights reserved

What is an “Embedded System”?

Embedded Not embedded

© NCC Group 2019. All rights reserved

What is an “Embedded System”?

Definition of “embedded system” is arbitrary.
What is meant here:
• Small 16-bit or 32-bit CPU (e.g. ARM Cortex M0+)
• RAM: 64 kB or less
• ROM: 256 kB or less
• Some network connectivity
• No operating system (“bare metal”)
• Strong constraints on size / power / thermal dissipation

(CPU is feeble but this does not matter much.)

© NCC Group 2019. All rights reserved

Constraints: Consequences on Security

No memory management unit (MMU)

• All RAM is accessible read/write (and exec in some architectures)
• ROM (Flash) is all readable

• No sandbox / isolation
• No trapping of NULL pointer dereference

• No ASLR

• No guard page for stack overflows
• Recursive algorithms must be banned

© NCC Group 2019. All rights reserved

Constraints: Consequences on Security

No room for multiple or large stacks

• Multiple concurrent processes must run
• … but without locking the system
• A typical C stack needs at least 1-2 kB, more realistically 4 kB
• C tends to increase stack usage

© NCC Group 2019. All rights reserved

Constraints: Consequences on Security
static
void battery_status_timeout_handler(void *p_context) {

char msg[256];

gfx_fillRect(0, 8, 128, 56, SSD1306_BLACK);
gfx_setCursor(0, 12);
gfx_setTextBackgroundColor(SSD1306_WHITE, SSD1306_BLACK);

snprintf(msg, sizeof(msg),
"Battery status:\n”
" Voltage: %04d mV\n”
" Charging: %s\n”
" USB plugged: %s\n",
battery_get_voltage(),
battery_is_charging() ? "Yes" : "No",
battery_is_usb_plugged() ? "Yes" : "No");

gfx_puts(msg);
gfx_update();

}

© NCC Group 2019. All rights reserved

Constraints: Consequences on Security

0: e92d 41f0 stmdb sp!, {r4, r5, r6, r7, r8, lr} 24 bytes
4: b0c2 sub sp, #264 ; 0x108 264 bytes
6: 2400 movs r4, #0
8: 2338 movs r3, #56 ; 0x38
a: 2280 movs r2, #128 ; 0x80
c: 4620 mov r0, r4
e: af02 add r7, sp, #8

10: 9400 str r4, [sp, #0]
12: 2108 movs r1, #8
14: f7ff fffe bl 0 <gfx_fillRect>
18: 4620 mov r0, r4
1a: 210c movs r1, #12
1c: f7ff fffe bl 0 <gfx_setCursor>
20: 4621 mov r1, r4
22: 2001 movs r0, #1
24: f7ff fffe bl 0 <gfx_setTextBackgroundColor>
(...)

© NCC Group 2019. All rights reserved

Languages for embedded development

C

• Works everywhere

• “Portable assembly” but with a few hidden automatic costs

• Not memory-safe:
• No check on array accesses
• Manual allocation / deallocation → double-free, use-after-free, leaks…
• Type punning

• “Undefined Behavior”

• Often required at some level (e.g. SDK offers only a C API)
• It’s a C world

© NCC Group 2019. All rights reserved

Languages for embedded development

Java ME

• GC, strong types,…
• Large RAM / ROM requirements
• Only ARM
• Needs an OS

© NCC Group 2019. All rights reserved

Languages for embedded development

Go

• Only with TinyGo: https://tinygo.org/

• Limited language / runtime support:

• “support for goroutines and channels is weak”

• Maps can only have up to 8 (eight!) entries

• GC: only for ARM, other platforms “will just allocate memory without ever freeing it”
(but GC is required for proper string management)

https://tinygo.org/

© NCC Group 2019. All rights reserved

Languages for embedded development

Rust Embedded: https://www.rust-lang.org/what/embedded

• Inherits all the memory-safety features of Rust
• Heap is optional

• But without the heap, everything is allocated on the stack

• Supports ARM Cortex-M and Cortex-R, RISCV, and MSP430 (experimental)
• But not AVR or Xtensa or other architectures that LLVM does not support

• Typically more stack-hungry than C
• Lots of automatic magic

https://www.rust-lang.org/what/embedded

© NCC Group 2019. All rights reserved

Languages for embedded development

Forth

• Many incompatible implementations
• It’s more a concept than a single defined language (though there is an ANSI standard)
• You are supposed to “write your own Forth”

• Very compact, with low RAM usage
• Even less safe than C, and extremely non-portable

© NCC Group 2019. All rights reserved

Languages for embedded development

Summary:
• No perfect language

• Adaptations from “larger languages” don’t solve the inherent issues, especially the
cost of stacks for concurrent processing

• Often needs to interoperate with C

• Generic portability requires compiling to C

• Security is better addressed with a non-magic language

© NCC Group 2019. All rights reserved

Success Story: BearSSL and T0

© NCC Group 2019. All rights reserved

BearSSL

SSL/TLS library optimized for embedded systems

• Full-featured with uncompromising security (e.g. constant-time code)
• Portable, no dependency on any specific runtime, OS or compiler

• State-machine API
• No dynamic memory allocation whatsoever

• Can run in limited ROM and RAM (about 21 kB ROM and 25 kB RAM)
• Can use less RAM, but requires support of small records by the peer

© NCC Group 2019. All rights reserved

BearSSL

Problem: TLS handshake messages, and X.509 certificates, are complex, nested
structures that can be large.

• X.509 certificate chain can be up to 16 MB
• Realistically, 2 to 10 kB; sometimes larger (OpenSSL’s default max is 100 kB)

• Data can be fragmented over different records

• Cannot buffer a complete message or certificate
• Must perform streamed processing
• Processing must be interruptible and restartable

Idea: run the decoding process as a coroutine

© NCC Group 2019. All rights reserved

BearSSL

• BearSSL is computational only (application handles low-level I/O)
• Handshake parser and X.509 validation run as two coroutines

• Each has its own state (stacks, variables)
• Parsing proceeds when data becomes available, by chunks

© NCC Group 2019. All rights reserved

T0

T0 is a Forth-like language used to implement the handshake parser and the X.509

validation engine.

• Compiled to threaded code
• Uses two custom stacks (data & system stack) of limited size (128 bytes each)

• Runs in a flat, small interpreter loop that can be stopped and restarted at will

• Instructions are a single byte each (token threading)

• Compiler is written in C# and performs some static analysis (maximum stack usage)

© NCC Group 2019. All rights reserved

Threaded Code

\ Read one byte, enforcing current read limit.
: read8 (lim -- lim x)

dup ifnot ERR_X509_INNER_TRUNC fail then
1- read8-nc ;

\ Read a 16-bit value, big-endian encoding.
: read16be (lim -- lim x)

read8 8 << swap read8 rot + ;

\ Read a 16-bit value, little-endian encoding.
: read16le (lim -- lim x)

read8 swap read8 8 << rot + ;

Executable code is (mostly) a sequence of function calls.

© NCC Group 2019. All rights reserved

Indirect Threaded Code

© NCC Group 2019. All rights reserved

Indirect Threaded Code

• Each function is a memory structure whose first field (CFA) is a pointer to native
code.

• For primitive functions, there is only that pointer.

• Interpreted functions use the generic entry code ({ENTER}); CFA is followed by the
function code as a sequence of pointers to function structures.

• Some primitive functions extract arguments located in the calling code (e.g. local
jumps).

• Execution proceeds with a virtual CPU loop and two stacks:
• Data stack: for function arguments and returned values
• Return stack: for return addresses and local variables

→ Stack usage is explicit

© NCC Group 2019. All rights reserved

Token Threaded Code

• Each pointer to a function structure is replaced with a token (index in a table of
pointers).

• One extra indirection per instruction.
• Most/all instructions fit on one byte.
• Primitive function code can be integrated inside the virtual CPU loop.

© NCC Group 2019. All rights reserved

T0 Compilation
$./T0Comp.exe -o src/x509/x509_minimal -r br_x509_minimal src/x509/asn1.t0 src/x509/x509_minimal.t0
[src/x509/asn1.t0]
[src/x509/x509_minimal.t0]
main: ds=17 rs=25
code length: 2836 byte(s)
data length: 299 byte(s)
total words: 203 (interpreted: 142)

• Compiler reads and interprets T0 code
• Immediate functions are executed on-the-fly (metaprogramming)

• C source code is produced with tokens, primitives and virtual CPU
• X.509 validator compiled size (ARM Cortex M4):

$ size x509_minimal.o
text data bss dec hex filename
6259 0 0 6259 1873 x509_minimal.o

© NCC Group 2019. All rights reserved

T0 Advantages

• Code can run as a coroutine with very small state (168 bytes for the two stacks)

• No dynamic memory allocation; streamed processing

• Guaranteed maximum stack usage

• Compiler verifies “types” (stack depth at all points)

• Small code footprint

• No magic

• … but not completely memory-safe

© NCC Group 2019. All rights reserved

T1

© NCC Group 2019. All rights reserved

T1

Evolution of T0 with extra features:
• Memory-safe
• Optional dynamic memory allocation (controlled) with GC
• Rich type system (including generics)
• OOP support
• Namespaces and modules

© NCC Group 2019. All rights reserved

Memory Safety

Memory safety is a set of memory-related features:
• No uncontrolled type punning
• Array accesses outside of bounds are prevented
• No use-after-free or double-free
• Guaranteed stack usage (no overflow)
• Guaranteed maximum heap usage
• All allocated memory is released (no leak)
• Concurrent writing is controlled or prevented
• Etc…

© NCC Group 2019. All rights reserved

Memory Safety in T1

Runtime checks:
• Array bounds on access
• Automatic memory management (garbage collector)

Compile-time checks:
• Maximum stack sizes
• Escape analysis (for stack-allocated objects)
• All method lookups are solvable
• No memory is interpreted with the wrong type
• No write access to static constant objects

© NCC Group 2019. All rights reserved

OOP
class A {

void foo(A a) {
System.out.println("foo AA");

}
void foo(B b) {

System.out.println("foo AB");
}

}
class B extends A {

void foo(A a) {
System.out.println("foo BA");

}
void foo(B b) {

System.out.println("foo BB");
}

}
class C {

public static void main(String[] args) {
A x = new B();
A y = new B();
x.foo(y);

}
}

Java code:
• Method call has a special first parameter

(object on which the method is called)
• Method lookup uses the dynamic (runtime)

type of the first parameter
• For other parameters, the static (compile-

time) type is used

→ This program prints:
foo BA

© NCC Group 2019. All rights reserved

OOP
struct A
end

struct B <sub> A
end

: foo (A A)
"foo AA" println ;

: foo (A B)
"foo AB" println ;

: foo (B A)
"foo BA" println ;

: foo (B B)
"foo BB" println ;

: main ()
B new B new ->{ x y }
x y foo ;

T1 code:
• No special parameter
• Method lookup uses the dynamic types of

all parameters
• No explicit static type analysis

→ This program prints:
foo BB

© NCC Group 2019. All rights reserved

Types

• Each value is a pointer
• Plain integers, Booleans… are also “pointers”
• No “value type”

• Every access to an object field is through an accessor (dedicated method)
• Accessors locate the field unambiguously

• Basic types:
• Booleans: bool
• Plain integers: int
• Modular integers: u8 u16 u32 u64 i8 i16 i32 i64

© NCC Group 2019. All rights reserved

NULL

There is no null pointer value.

• Reading from an uninitialized object field triggers a runtime error

• Some object fields (basic types) are initialized at zero

• Possible reads from uninitialized local variables are detected at compilation

© NCC Group 2019. All rights reserved

Plain Integers and Overflows

Strategies when integer operations overflow the representable range:
• Use modular arithmetic (C#, Java, Go)
• Report an error (Ada)
• Do one or the other, depending on external circumstances (Rust)
• Transparently upgrade to big integers (Python, Scheme)
• Use floating point (JavaScript)
• Anything goes (C, C++)

T1 uses the Ada way for “plain integers” (int) and modular arithmetic for exact-width
integers (u16, i32…)

© NCC Group 2019. All rights reserved

Whole Program Analysis

: triple (object)
dup dup + + ;

: main ()
4i32 triple println
"foo" triple println ;

• Compute the complete call tree with
possible stack contents.

• Each call of a given function is a different
node.

© NCC Group 2019. All rights reserved

Whole Program Analysis

• Complete flow analysis from entry point:
• For each function call, only cares about which types can actually be present on the

stack.
• Types for function definition are for call routing, not type restriction.
• No syntax to express potential parameter types.
• Return types are computed.
• Dead opcodes and unreachable functions are detected.

• Multiple nodes for each function (one per call site):
• All functions are generic.
• Recursion would lead to an infinite tree (disallowed).

• Includes escape analysis and detection of writes to constant instances.

© NCC Group 2019. All rights reserved

Current Status
Web site: https://t1lang.github.io/
Done:
• Specification + rationale
• Bootstrap interpreter/compiler:

• Interpreter
• Whole program analysis
• Code generator (partial)

TODO:
• Finish bootstrap compiler
• Standard library (at least lists and sorted maps)
• Rewrite T1 compiler in T1

https://t1lang.github.io/

