
The T1 Programming Language

Thomas Pornin

May 14, 2019

Abstract

This document describes the design of the T1 programming language. It is intended to serve both as

a specification of the core language features, and a rationale for the design decisions.

T1 is an imperative language that offers memory safety, generic metaprogramming, strong static typ-

ing through whole-program analysis, and support for object-oriented programming. It is geared to-

ward efficient support of memory-constrained architecture, and in particular can be embedded as

efficient co-routines with tight bounds on stack usage. Nevertheless, T1 aims at also being usable as

a general purpose language.

WARNING:T1 is a work in progress, and the specificationmay be altered as implementation of the
compiler unveils unforeseen difficulties or potential desirable feature changes.

1

1 Overview Of T1

1.1 Project Goals

T1aims at providing anumber of features that are not all obtained together fromexisting languages. It can

be viewed as an extension ofT0, the Forth-like languagewhich is used for some parts of BearSSL (namely,

for processing handshake messages, and decoding X.509 certificates). Within the context of BearSSL, T0

exists so as to express complex nested decoding and encoding over streamed data: in order to explore

an encoded object with nested structures without requiring buffering of the entire object, the decoding

process must be interruptible and restartable, i.e. live as a coroutine that can be scheduled to run when
and only when data bytes become available. The standard C language lacks coroutines; coroutines can be

defined in non-standard ways, but will require an in-memory stack of non-negligible size for constrained

systems; T0 provides a lightweight coroutine that uses a very small custom stack (with guaranteed limits

on maximum stack growth).

T1 is an evolution of T0 into a more ambitious project:

• LikeT0,T1must support compilation into components that canbe embeddedwithin applications

that run on “bare metal” systems (no OS support).

• Lightweight coroutines must be supported.

• T1 must be (by default) memory-safe. T0 has only limited memory-safety, in that the compiler

proves strict bounds on maximum stack usage; however, array accesses in T0 are not checked with

regards to array boundaries.

• T1 shall support object-oriented programming. OOP is primarily a way to structure application

code; in plain C, this is usually done with function pointers arranged in vtables. The language can

provide primitives that help with OOP, for a simpler and safer syntax. T0 has no specific OOP

features.

• T1 should optionally support dynamic memory allocation. This more or less implies the use of a
garbage collector, to maintain memory safety. It must be possible to write code that does not use

the GC, and, when the GC is present, it must be configurable with strict limits on allocated size.

• Code written in T1 is meant to be embeddable in applications that primarily use C; thus, call to

T1 code from C, and to C from T1, shall be simple and efficient. In particular, the memory layout

of T1 objects should have a predictable counterpart in the C world, so that direct access is feasible

and easy.

• While T0 has only a single flat namespace, T1 should offer some ways to segment the code space

into units that limit the risk of name collision, especially if several different developers are involved.

2

Memory safety andOOPboth require the definitionof a rich type system,whichmay then also beusedby

the developer to express constraints on the structure of the application, that will be verified and enforced

at compilation and/or runtime.

Since T1 aims at being a generic purpose language, it should be possible to write complex applications

entirely inT1, startingwith theT1 interpreter/compiler itself (as is traditional for language development).

Programming language design includes the syntax, which sits between a rational, deterministic machine

(the computer) and a definitely less rational and deterministic human (the developer). As such, the lan-

guage necessarily has an aesthetic facet, which cannot be rationally argued for or against. As a working

principle on these matters, I define myself as the sole judge; T1 should aesthetically please me.

1.2 Main Features

T1 combinesmany features inspired fromotherprogramming languages, butnothitherto found together

in a single language. Inspiration has been drawn from, in no particular order, C, Java, C#, Forth, Caml,

Rust, Go, and others. Some of the features will be explained in terms of comparisons with these other

languages. In this section, we give an overview of the main features.

Imperative. T1 is an imperative language. More generally, it strives to give to the programmer a clear

mental picture ofwhat happens in the generated code; notably, order of execution of all operations is duly

specified, and should match whenever possible left-to-right reading order in the source code. Automatic

optimizations should be kept at a minimum (e.g. no automatic vectorization with SIMD instructions).

This can be thought of as a “no magic policy”.

Fully Specified. There is no “undefined behaviour”. All operations occur in fully specified ways

(this is similar to Java, and unlike C). There may be some platform-dependent characteristics, such as the

possible range of integer values that can serve as array indices (this corresponds to types such as size_t in

C, or usize in Rust).

Combined Interpretation / Compilation Model. The source code, when processed by the T1

engine, is really executed, as a script. The compiler is a final optional phase that can extract some of the
defined functions and serialize them into an executable form. While interpretation and post-compilation

execution work on the same functions, they use quite different models:

• During interpretation, everything is dynamic. Functions and types can be referenced before they

are defined; a violation is reported only when trying to actually call a function which is not yet

defined. Interpreted code has full access to API that allow creating new types and functions.

3

• Compilation performs a thorough static type analysis that will refuse to produce the executable

output for code that does not comply to strict rules. The point of the rules is to ensure that exe-

cution won’t fail with a type-related error; they can also provide guarantees on goodmemory-wise

behaviour. In particular, compiled code is not allowed to be recursive, so that maximum stack

usage can be a priori bounded.

Processing source code as a script to be executed means that compilation necessarily involves executing
the source code. The interpreter will provide a specific “sandboxing” mode which will prevent access to

system-level features such as the network, or files outside of the source code collection itself. The ability

to sandbox potentially hostile code is not considered a primary feature, but this should ultimately be

supported.

Extensible Postfix Syntax. T1 uses a Forth-like syntax, which relies on postfix notation: operations

appear after the operands. While this syntax does not follow traditionalmathematical practice, and is thus

harder to read and understand (at least without training), it has other advantages that are important to

the T1 model:

• In the postfix notation, everything happens in left-to-right source order. This participates to the

no-magic policy.

• Since functions work over a shared data stack, they naturally receive several arguments and return

several values without any extra syntax to that effect.

• As in Forth, “immediate” functions can be defined, that are invoked when encountered, in the

middle of source code translation. This way, the source code itself can take over the interpreta-

tion process at any time and access the remaining of the source code in arbitrary ways. This allows

defining new syntax on the fly, and, more generally, opens the way to generic powerful metapro-
gramming.

• Postfix source code can be readily serialized into an executable format running on threaded code, a
well-known code generation method that can allow for a very small compiled code footprint.

Generic Object-Oriented Programming. In classic OOP (as in for instance Java or Go), func-

tions can be attached to an object type and be invoked on an object instance (we then call them “meth-

ods”). Several functions may share the same name; the one which will be invoked will depend on the

runtime type of the object on which the method is invoked (in C++ and C# terms, this is how virtual

methods work). T1 goes one step further, in that the invoked functionmay depend on the runtime types

of all arguments, not just the first one. Indeed, while Java, C# and other languages syntactically single out
the first argument as “the instance on which the method is invoked”, T1 considers all arguments on the

same ground.

4

Only Dynamic Types. Consider the following Java code snippet:

class A {

void foo(A a) {

System.out.println("foo AA");

}

void foo(B b) {

System.out.println("foo AB");

}

}

class B extends A {

void foo(A a) {

System.out.println("foo BA");

}

void foo(B b) {

System.out.println("foo BB");

}

}

class C {

public static void main(String[] args) {

A x = new B();

A y = new B();

x.foo(y);

}

}

This code will print “foo BA”. The variable x contains a reference to an object of type B, so the invoked

method will be one of B, not one of A, even though x was declared as a variable of type A. On the other

hand, ywas also declared as a variable of type A, and this is the type which will be used to decide which of

B’s foo()methods is invoked, even if the value which is then passed as parameter is really a reference to an

instance of B.

This code snippet illustrates that Java uses two distinct notions of type for purposes of issuing calls to

methods:

• For the first parameter, i.e. syntactically the instance “on which” the method is called, its dynamic
type is used: this is the type of the instance, regardless of the apparent type of the expression that
yields a reference to that object.

• For the other parameters (the ones within the parenthesized list), only the static type is used: this is
the type syntactically attached to the expression, irrespective of the actual value at call time.

5

In T1, this duality is rejected; only dynamic types are used. This is part of the goal of OOP genericity: if

all parameters to a function are treated on an equal basis, then they should all use the same kind of type

analysis for purposes of method dispatch.

Use of only dynamic types does notmean that static typing cannot be performed; in fact, the T1 compiler

is all about making thorough static type analysis. Rather, this means that the goal of static analysis is to

work out the possible dynamic types of the parameters upon execution, and verify that there will indeed

be methods matching each call. The semantics of the language are still defined in terms of the dynamic
types of values, not of static types attached to expressions.

1.3 Memory Model

All values are references, i.e. pointers to object instances. This also holds, formally, for small integer types;
e.g. a value of type u32 (32-bit unsigned integer) that contains the number 5 is considered to be a pointer

to an immutable instance that incarnates that number. In practice, for small integer types and booleans,

these immutable instances don’t actually exist in memory; formally, the booleans and small integers are

still references.

There is no null pointer. When an object is created in memory, its fields are uninitialized, and reading an
uninitialized field triggers a runtime error.

Tony Hoare introduced null references in ALGOL, mostly because it was easy to do so. He now calls

this decision “his billion-dollar mistake”. Null pointers imply the risk of null pointer dereference. In

modern “big” systems, in which there is an active memory management unit, a null pointer derefer-

ence will reliably trigger a CPU exception, which the operating system will convert into some sort of

interruption (e.g. a SIGSEGV signal on Unix-like systems). However, there can still be issues when the

null pointer is taken as an array, with a large access index: the offset may make the access valid again,

from the point of view of the MMU. On smaller systems without a MMU, null pointer dereferences

cannot easily be trapped, leading to hard to debug errors.

Some languages do not have null pointers, in particular theCaml family. These languages demonstrate

that avoidance of null pointers is possible and not especially hard, though it requires explicit initializers

for all fields. T1 takes a “middle path” in which null pointers don’t exist, but individual object fields

may be uninitialized; this means that runtime checks will happen only upon field access, not on all

pointer following actions. Static analysis might also be able to remove some of these checks.

There are no C#-style “value types”. In C#, a value type is a struct that contains fields, and which is

cloned when needed. The main reason to have value types is storage efficiency. Consider, for instance, an

application that manages a large array of dates. In C#, this would use an array of the value type DateTime;

all these instances would be concatenated in memory into a single allocated chunk. In Java, which does

not have value types, an array of Date would be used, but this would really be an array of references

to individually allocated Date instances. This would be likely to induce a much larger overhead for the

memory allocator; it also increases access cost, since that is one extra layer of pointers to follow.

6

In order to recapture the storage efficiency of value types, T1 defines embedding: when an object type

is described, or an array created, fields can be defined to be either values (i.e. references), or embedded

sub-objects. An embedded sub-object is allocated within the encapsulating object, and there is no extra

pointer. This changes the semantics (the embedded object is always there, and cannot be substituted for

another), and thus is made explicit in the language; this is not an automatic optimization.

Since there are no value types, all parameters to functions are references, and all returned values are refer-

ences as well. These values are exchanged over a common stack. This stack is separate from the in-memory

structure that keeps track of function calls (in Forth terms, the data stack is not the system stack). In

compiled code, thanks to the restrictions imposed by the compiler, the stack needs not be more than a

transient abstraction; there is not necessarily a single dedicated memory area with a stack pointer.

Apart from the stack, functions may also declare local variables and locally allocated object instances (i.e.

on the “system stack” in Forth terms). Local variables contain values, i.e. references to instances. Local

variables are created when the function is entered, and destroyed when the function exits; notably, they

are not bound to scopes smaller than a function body.

The Go language supports creating structures that can contain either embedded sub-objects, or pointers

to other objects. The default (simplest) syntax in Go is for embedding, and Go supports value types in

the C# sense. Since T1 core values are references, the syntax is different: structure types are by default

references, and an extra syntax is used to make embeddings.

During interpretation, instances are allocated dynamically, and memory is managed with a garbage col-

lector: unreachable objects are automatically reclaimed. Compiled code offers several options:

• The compilation phase may involve static allocation of instances which were created during inter-

pretation, and are referenced from the produced code.

• Scope-based allocation is possible (i.e. “on the stack”). This is allowed by the compiler only insofar

as it can statically determine, through escape analysis, that the object will not ever be used after

the declaring scope has exited; moreover, for objects with a variable length (e.g. arrays), the actual

length must be fixed at compile time. Such allocation does not necessarily happen on a physical

stack.

• Dynamic allocation with automatic reclamation by the GC is possible. A point of T1, though, is

to make such allocation optional (if the code does not use such allocation, the GC itself won’t be

included in the output).

All accesses to instances ultimately use special accessor functionswhich are automatically definedwhen the
corresponding type is declared. When accessing array elements (by index), the accessor functions enforce

strict bounds checking.

7

2 Lexing

We describe here how the T1 interpreter breaks down source code into individual tokens, upon which

the T1 syntax is built. Since T1 is generically extensible (interpreted source code can, at any point, invoke

itself and take over processing of the remaining of the source code), an arbitrary number of new parsing

rules can be implemented by source code. The rules detailed below explain how parsing is done at the

start of the source code processing.

In Forth, the only lexing process is to aggregate sequences of non-space characters into “words”. All

other syntax, e.g. literal strings or comments, is implemented by custom “immediate words”, which

are functions that are invoked right away when encountered in the source stream. T1 implements a

more complicated lexing process for ease of development.

It shall be noted that Forth aims at offering support for development right on the target system, which

may be embedded and constrained; this is one of the main reason for the very simple lexing process

of Forth. In T1, the normal model is to make development on a dedicated powerful development

workstation, distinct from the target system on which the code will run, which is whymore expensive

lexing is not an issue.

Input Characters. Source code consists in a number of text streams that are processed in due order.

They are normally stored as individual files. Each stream contains bytes which are interpreted into char-
acters using UTF-8 encoding; in this specification, a character is a Unicode “code point”, i.e. an integer
in the U+0000 to U+10FFFD range. Outside of literal strings, only ASCII characters (U+0000 to U+007E) may

appear.

As will be described below, all the lexing really operates on bytes. In UTF-8 encoding, each ASCII

character is encoded as a single byte with the same value, and all other code points are encoded as

sequences of bytes of value 0x80 or more. The non-ASCII byte values that appear in literal strings can

thus be simply copied, since, aswe shall see, string values are really arrays of bytes. Moreover, the source

itself can define and then invoke functions that can take over source code processing in arbitrary ways,

and such functions may interpret source bytes differently. In that sense, it is not strictly necessary that

source file uses UTF-8 encoding, only that the parts that rely on the lexing process described here use

only ASCII characters outside of literal strings.

However, it is expected that most source code writing will be done with text editors, that are likely to

rely on, and enforce, a specific encoding charset. In the interest of maximum interoperability, it is here

defined that all source code shall be UTF-8 encoded, and interpreters/compilers may enforce it.

Text breaks down into lines; each line is terminated by a newline character (U+000A). If a line ends with a

CR+LF sequence (U+000D followed by U+000A), then this is considered to be equivalent to a single newline

character.

8

Whitespace. Whitespace is any sequence of one or more characters in the U+0000 to U+0020 range,

i.e. all ASCII control characters, and the ASCII space. Thus, tabulations (U+0009) and newline (U+000A)

are whitespace. Whitespace characters separate tokens, but are otherwise not significant. Indentation, in

particular, is a purely aesthetic choice with no impact on semantics. Take care that whitespace characters

appearing within literal strings do not count as whitespace.

Comments. The character “#” starts a comment (unless it appears within a literal string or a character

constant). The comment spans to the end of the current line, but does not include the newline character

that terminates that line. If a comment appears on the last line of a file that does not end with a newline

character, the comment spans to the end of the file. Comments are ignored; since, in general, a comment

is immediately followed by a newline character, that newline character acts as whitespace.

Single-Character Tokens. Each of the following characters, when encountered outside of a literal

string or character constant, counts as a token in its own right:

() [] { } '

Names and Numerical Constants. The lexer parses a word as a sequence of non-space printable

ASCII characters (U+0021 to U+007E), excluding the following characters:

() [] { } ' " #

The lexing process is “greedy”: the longest sequence of allowed characters is assembled, and stops at the

first disallowed character (from the list above), whitespace, or end-of-stream, whichever comes first.

Numerical Constants include the following:

• Boolean constants are the words “true” and “false”.

• Character constants are all words that start with a backquote character (“`”, U+0060).

• Number constants are all the words that start with an ASCII digit (“0” to “9”), or a minus (“-”) or
plus sign (“+”) followed by an ASCII digit.

Names are words which are not numerical constants.

Note that a word which starts with a sequence that introduces a numerical constant, but fails to parse as

a valid numerical constant, triggers an error; it is not “demoted” to being a name.

9

In Forth, when a word is encountered, it is first evaluated as a function name; this works because

Forthuses a strict define-before-usepolicy, so anyword canbeunambiguouslymatched against existing

functions at this point. Only words which are not recognized as function names will be re-interpreted

as possible numerical constants. A side effect is that it allows defining functions with names such as

42, a feature which is more confusing than useful.

In T1, we allow referencing functions and types that will be defined later on, and thus we cannot use

numerical interpretation as a fallback for unknown function names. The non-reinterpretation of in-

valid numerical constants as names is meant to promote readability: looking at the start of a word is

enough to know whether it is a numerical constant or a name; it also allows later versions of T1 to en-

rich the syntax with more numerical constants, e.g. floating-point values, without breaking backward

compatibility.

A consequence is that function names cannot start with a digit, such as Forth’s “2DUP”.

Number Constants. Valid number constants are:

• a sequence of ASCII digits, interpreted as an integer value in base 10;

• the sequence “0x” or “0X”, followed by one or more hexadecimal digits (hexadecimal digits are

ASCII digits “0” to “9”, ASCII uppercase letters “A” to “F”, and ASCII lowercase letters “a” to

“f”), interpreted as an integer value in base 16 (case is not significant);

• the sequence “0b” or “0B”, followed by one or more binary digits (“0” or “1”), interpreted as an

integer value in base 2;

• any of the above, preceded by a minus sign (“-”) or a plus sign (“+”); the minus sign makes the

value negative, while the plus sign does not change the value and is purely cosmetic;

• any of the above, followed by a suffix in the following list, and defining the constant to have the

corresponding modular integer type: i8 i16 i32 i64 u8 u16 u32 u64

If the number constant does not have an explicit type suffix, then it has plain integer type (std::int, as

will be defined in section 4). If the value does not fit in the allowed range for the target type, then an error

is raised.

Character Constants. A character constant describes an integer value of type std::u8 in the 0 to 126
range (inclusive). Valid character constants consist in a backquote character (U+0060) followed by:

• a single ASCII character in the U+0021 to U+007E range, excluding the backslash character (“\”);

• an escape sequence that starts with a backslash, followed by one character:

10

– \s stands for space (U+0020);

– \t stands for tabulation (U+0009);

– \r stands for carriage return (U+000D);

– \n stands for newline (U+000A);

– \' stands for quote (U+0027);

– \` stands for backquote (U+0060);

– \" stands for double-quote (U+0022);

– \\ stands for backslash (U+005C).

In all cases, the character constant stands for the numerical value that corresponds to the represented code

point.

Character constants are deliberately limited to plain ASCII because they have type std::u8, following

the decision that “normal” strings really are sequences of bytes. This will be explained in more details

in section 4.

Since character constants are self-terminated (inspection of their contents is enough to decide that no

extra character follows in the token), they neednot be separated bywhitespace from thenext token. Thus,

“`ab” is parsed as two tokens, the character constant for lowercase letter “a”, then the one-character name

“b”. This is of course confusing, so don’t do that.

Literal Strings. A literal string represents a value which is a sequence of bytes. Such a token starts
with a double-quote character “"” and ends at the next unescaped double-quote character. The following

rules apply:

• The starting and ending double-quote characters are not part of the string contents.

• Bytes appearing in the string literal, other than backslash and newline, are part of the string literal.

This includes all byte values, even ASCII control characters (note that a CR+LF sequence at the

endof a source text line counts as a single newline character, which cannot appear unescapedwithin

a literal string).

• When a backslash appears within a literal string:

– If the backslash is immediately followed by the newline (or CR+LF) that ends the line, then

this is a line escape: the next line must start with zero or more whitespace characters (ex-

cept newline), followed by a double-quote character; the backslash, newline, whitespace and

double-quote character are then skipped, and parsing of the literal string continues after the

double-quote character.

11

– Otherwise, the backslash character must begin an escape sequence. Escape sequences are:

* escape sequences that may appear in character constants;

* \x followed by exactly two hexadecimal digits, standing for the byte whose value is ex-

pressed in hexadecimal by these two digits;

* \u followed by exactly four hexadecimal digits, standing for the UTF-8 encoding of the

code point whose value is expressed in hexadecimal by these four digits;

* \U followed by exactly six hexadecimal digits, standing for the UTF-8 encoding of the

code point whose value is expressed in hexadecimal by these six digits.

Note that hexadecimal digits areASCII digits “0” to “9”, uppercase letters “A” to “F”, and low-

ercase letters “a” to “f”. Case is not significant for hexadecimal digits. Unrecognized escape

sequences trigger errors.

For instance, this literal string:

"Hello\

" World!"

uses a line escape and has contents “Hello World!”.

The four following strings:

"café"

"caf\xc3\xa9"

"caf\u00E9"

"caf\U0000E9"

all define the same sequence of five bytes. Take care that “\x” escapes allow inclusion of arbitrary byte

values which do not necessarily correspond to the valid UTF-8 encoding of a sequence of code points.

Apart from line escapes, newline charactersmaynot appear into a literal string (but a “\n” escape sequence

can be used to include a newline character in the string contents). Thus, a literal string may span several

lines only if each line (except the last) endswith a line escape. Moreover, a string literalmust be terminated

before the end of the current text stream; string literals do not span across files.

Since the whitespace characters that are part of a line escape do not include the newline character, a com-

ment is not possible within that whitespace.

12

3 Names

In T1, functions, types and local variables have names. A name is a sequence of characters (unicode code

points). In general, any sequence of code points is usable for any purpose. However, names that are

encountered within source code are subject to some processing which modifies their interpretation and

restricts their syntax.

The lexer parses a name as a token that contains only printable non-space ASCII characters, excluding a

few “forbidden” characters (parentheses, braces...). Such a name may be “qualified” or “unqualified”:

• A qualified name contains a single instance of the sequence “::”. The part before the sequence is
the namespace, and the part after is the raw name.1

• An unqualified name does not contain the sequence “::”. Thus, raw names (obtained from re-

moving the namespace from a qualified name) are unqualified.

The general model of source code interpretation is that qualified names designate a specific entity, and

unqualified names are interpreted depending only on the syntactic context. For instance, under normal

conditions, the interpreter reads the next token and expects it to be either a numerical constant, a literal

string, or a function name. In this last case:

• If the name is qualified, then this designates exactly that function.

• If the name is not qualified, then it will be matched against the following, in due order:

– If the name matches an accessor for a locally allocated variable or instance, then the name is

interpreted as an invocation of that accessor.

– If the name is part of one of the currently defined aliases (imports), then it designates the

function that the alias maps to.

– Otherwise, the name is considered to use the currently active namespace.

Namespaces are used to keep track of defined functions and types, and to avoid spurious collisions. Nor-

mal source code should contain very few qualified names:

• At any point in the source code, there is an active namespace in which new functions and types are

defined.

• Access to names in other namespaces is normally done through aliases and import lists.

1
In general a name shall not contain more than one instance of “::”. If it does, then all operations that split the name into

a namespace and a “raw” name use the first (leftmost) occurrence of “::” as splitting point.

13

• The developers are supposed to have full knowledge of “their” namespaces, and thus avoid internal

collisions.

There are no visibility rules, i.e. public and non-public functions and types. Every such element can be
accessed by using a qualified name. However, good software engineering practice is to refrain from doing

so in the general case. Functions and types canbe added to the export list of the currently activenamespace:
such an export list can be imported from other namespaces with an “import” clause, which locally defines

corresponding aliases for the exported names. In that sense, “public” functions can be defined bymaking

them part of the export list of their namespace, which documents the intent of making them callable

from other namespaces.

More details on import lists and aliases are given in section 6.8.

All namespaces that start with “std” are reserved for the T1 implementation. Notably, the export list for

“std” itself is automatically imported, and it defines aliases for all the core syntactic constructions and

types. Source code can, at any time, clear the current list of aliases, including those from the “std” export

list.

14

4 Types

All T1 values are references to instances. This includes the basic types (booleans, small integers...). For-
mally, a value for the integer “5” is considered to be a reference to an immutable object instance that

represents that integer; such instances are virtual and cannot be really created inmemory. This definition

allows us to define the T1 type systemwithoutmaking special cases for such basic types. In practice, there

are some restrictions in compiled code that avoid type punning that would be expensive to implement.

4.1 Sub-Typing

Sub-typing is amechanismwhich incarnates promises of functionality. When type bar is a sub-type of foo,

then it means that whenever a function expects as argument a reference to an object of type foo, it may

receive instead a reference to an object of type bar, and things “should work”. As we shall see later on, the

only thing that can be made with values is to call functions on them, and function calls are dynamically

mapped based on the runtime types of their arguments; thus, making bar a sub-type of foomeans that

for every function that takes as input a foo, a function of the same name that accepts a bar is defined.

Whether such promises are fulfilled or not does not impact sub-typing. During interpretation, an unful-

filled promise will trigger a runtime error at the time the function is called. The compiler statically checks

that such a situation does not occur; in that sense, the compiler does not check that there are methods for

bar that correspond to all methods for foo, only that there are such methods for all calls that can actually

occur in the compiled code.

Sub-typing has the following rules:

• Every type is considered to be a sub-type of itself. A strict sub-type of type “T” is a sub-type of “T”
that is not “T” itself.

• All types are sub-types of “std::object”.

• Strict sub-typing is an acyclic graph. A given type is a sub-type of itself, but shall not be a sub-type

of any strict sub-type of itself.

• Sub-typing rules can be added to any type at any time, provided that they don’t create cycles. Basic

types are an exception, in that they cannot be sub-typed, ormade strict sub-types of any other types

except “std::object”. Note that sub-typing can be added even on types for which instances have

already been created.

Sub-typing is distinct from both embedding and extensions, which will be covered later on.

If A is a sub-type of B, then B is a super-type of A. A type can have several direct sub-types and several direct

super-types. Sub-types and super-types are not ordered.

15

Sub-typing is somewhat similar to interfaces in Java and C#: a mechanism to tag types, and promise

existence of methods, without actually implementing them. However, in both Java and C#, such

promises are checked by the compiler: a class that declares that it implements a given interface, but

fails to provide the relevantmethods, will be rejected at compilation. This does not occur in T1, which

concentrates on actual usage: a compilation error is triggered not by failure of providing amethod that

matches a given sub-typing relationship, but by trying to call such a method.

4.2 Basic Types

Basic types are the following:

• std::object is the root of the sub-typing graph. Instances of std::object cannot be created. The

basic equality and inequality functions (“=” and “<>”) are defined on std::object and implement

(in)equality of references. Due to the way function lookups are performed, this behaviour is in-

herited by all types, unless explicitly overridden.

• std::bool is the boolean type. The two possible values are “true” and “false”.

• std::int is the default integer type. It has a range which depends on the current architecture and

implementation, but which is large enough to serve as index value in arrays. It is signed: its range

is −m to m − 1 for a given integer m = 2
ℓ
. Operations on std::int are checked; any overflow

condition triggers a runtime error.

• std::u8, std::u16, std::u32 and std::u64 implement unsigned integers modulo 28, 216, 232 and

2
64
, respectively. Since they are modular integers, they have “wrap-around” semantics, and never

overflow.

• std::i8, std::i16, std::i32 and std::i64 are the signed types corresponding to theunsignedmod-

ular types. For instance, std::i8 is for integers in the −128 to 127 range. They implement wrap-

around semantics, just like unsigned types; like Java and unlike C, computations on signed types

that exceed the range yield well-defined results.

There are no automatic conversions. Contrary to C, no value can be used as a boolean, except the values
of type std::bool. Arithmetic operations such as addition cannot involve distinct types; e.g. you cannot

add a u8 to a u16. Conversion functions are provided. In C and C++, many automatic conversions are

applied; in Java and C#, only widening conversions (that conserve the mathematical value) are implicit.

In T1, all conversions must be explicit: this is meant to force the developer to have a clear mental picture

of what happens to the data.

For the default integer type, typically used for indexing into arrays, the following language designs (at

least) are possible:

16

• Use a native type of the architecture, withwrap-around semantics. This is what Rust does with

the isize and usize types. In C, there is an unsigned integer type which is what sizeof returns

and memcpy() expects; the standard headers give it the name “size_t”.

• Use a type with a defined, fixed width, typically 32 bits. This is the Java road, with int. This

implies some limitationswhenmachinememory sizes have grown somuch that indexes beyond

2
31
are no longer ridiculous. In C#, some extensive contorsions were made to allow indexing

with both int and long.

• Transparently expand integers into big integers with unlimited range, bounded only by the

RAM required to represent such values. Python uses this strategy; it is also encountered in

many Scheme implementations. Computations on small integer values can be done without

dynamic allocation, but large integer values incur some performance loss.

• Use a type with a defined range (thatmay depend on the architecture) but detect overflows and

transform them into actual errors. This is reminiscent of Ada.

• Make something weird like JavaScript: there are no integers, only floating point values. When

going out of range, values become approximate.

T1 follows the Ada way for several reasons:

• Wrap-around semantics, or the C “undefined behaviour” when exceeding range on a signed

type, make for devious bugs which are often security issues. Secure code must often include

extensive analysis and explicit checks tomake sure that overflows don’t occur; it is safer tomake

all checks by default, and possibly suppress them when the compiler can be convinced that no

overflow occurs. Wemay say that integer overflow checks are needed in the sameway as bounds

checking is needed for array accesses.

• A fixed-width type is too limiting; e.g. a 32-bit type is too expensive for small 16-bit microcon-

trollers, and yet not large enough for large 64-bit systems.

• Big integers are seductive but incur some extra costs; in particular, some formof dynamicmem-

ory allocation is needed, and this goes contrary to the strict RAMdiscipline andmemory safety

that T1 strives to achieve. Moreover, big integers cannot be implemented in constant-time.

T1 implementations may use a slightly smaller range than expected. For instance, on a 32-bit architec-

ture, std::int values may have a range limited to −230 to 230 − 1, i.e. 31 bits with signed interpreta-

tion, not 32 bits. This is done in order to allow an in-memory representation that is compatible with

pointers: pointers to instances are normally aligned, hence use even 32-bit values; thus, integers can

be represented as odd values, the least significant bit being used to mark the value as an integer. That

kind of trick is common in Scheme and OCaml implementations; it allows storing integers in pointer

fields in a way which works well with runtime type checks and garbage collection.

17

4.3 Strings

There is no dedicated “character string” type. Strings are arrays of bytes. Literal strings define statically

allocated arrays of bytes. The name “string” is provided as an alias for the name of the type for an array

of bytes (which is “(std::u8 std::array)”, as will be described later on).

In C, there are no real character strings, only arrays of charwith a terminating zero. T1 does not need

or use a terminating zero, because its arrays have a definite length accessible at runtime.

In the infancy of computers, “characters” were believed to be simple, atomic elements that could be

representedwith a simple, small, fixed-width type, e.g. “char” in the C language. It soon appeared that

different languages required more characters, and “code pages” were invented to incarnate the inter-

pretation of bytes into characters. Code pages implied huge interoperability issues, and the problems

were made much worse when non-alphabetic scripts such as Japanese had to be taken into account.

Unicode is a unifying effort that tries to remove the need for code pages. Unicode defines code points;
initially, each code point was a 16-bit integer, but this proved too limited, and code points can now

use up to 22 bits (valid code point values are in the 0 to 0x10FFFD range). Java defined its String

type to be a sequence of char values, a 16-bit type, as per the first version of Unicode. Amore modern

redefinitionwould use a 32-bit integer type, so as to represent the whole range of possible code points.

This is, however, an illusion. Unicode defines code points, not “characters”. Consider for instance the

English word “café” (an import from French, but still a valid English word); the last character (“é”)

admits two representations inUnicode. The first one is a single code point U+00E9 (“latin small letter E

with acute”); the other one is a sequence of two code points, U+0061 (“latin small letter E”) followed by

U+0301 (“combining acute accent”). Thus, a single “character”may consist of several code points. A lot

of combinations are possible (in particular inHangul, the Koreanwriting system) and it would not be

practical tomap all of them into a single numerical type. Therefore, any sufficiently advancedUnicode-

aware processing of text must be able to accomodate variable-length representations of characters.

A simpler model is represented by Go: strings are just bytes. When the bytes must be parsed as text,

then they are decoded as per UTF-8 rules. UTF-8 has some nice properties:

• Every ASCII character is encoded as a single byte whose value matches the ASCII code of the

character. For instance, the ASCII code of “e” is 0x61, and it is encoded as a single byte of value

0x61. Thus, ASCII is “preserved” by UTF-8 encoding.

• All other code points are encoded as sequences of bytes with values no less than 0x80; none of

these bytes may be misinterpreted as an ASCII character.

Using UTF-8 means that technical processing, in particular for text-based protocols such as HTTP,

can use the traditional one-character-per-byte model, provided that the processing uses only ASCII

characters, and bytes with values 0x80 or more are just kept together. This has the additional benefit

of not enforcing UTF-8 encoding; this is handy when, for instance, exploring file directories, where file
names are OS-provided sequences of bytes which need not be valid UTF-8.

18

T1 follows the Go way and uses byte arrays for strings.

Functions that use and return strings assume immutability: a string instance should never change once

initialized. However, T1 does not enforce this property: when an array of bytes is used as a string, it is up

to the developer to refrain from modifying its contents as long as it is used elsewhere with immutability

semantics.

The T1 compiler enforces immutability of all statically allocated instances, and this includes the instances
corresponding to literal strings.

Enforced immutability would make programming “safer” at the expense of extra allocations. For in-

stance, if bytes are read fromanetwork interface, then these bytes arewritten into a buffer. To interpret

that buffer as an immutable string, there are several options:

• Copy the bytes into a newly allocated read-only object. This is what is done in Go when a

“[]byte” value is cast into a “string”. Such a mechanism requires dynamic allocation.

• “Lock” the buffer with a flag checked at runtime for each write access. This requires room for

that extra flag, and, indeed, runtime checks, which may have a non-negligible cost. Unlocking

would have to be performed as well. Also, any error will be reported only at runtime, which is

undesirable in general (compile-time error reporting is much preferred).

• Use complex borrowing semantics to ensure that concurrentmodifications don’t occur. This is

what Rust does, with far-reaching consequences on the application structure (what is deemed

by the colloquial euphemism “fighting the borrower”).

• Don’t do anything; just document that a given string, when provided to a function, may be

retained and used after that function has returned, and therefore must not be modified.

T1 follows the last of these options, based on my own development experience: I don’t tend to make

bugs related to immutability confusion, and thus the enforced extra safety does not seem to be worth

the extra costs for that property. This is a personal judgement call, and I might add a truly immutable

string type in a later version.

4.4 Structures

New types are built as structures. A structure contains fields and embedded sub-structures. A field contains

a value (i.e. a reference); an embedded sub-structure is an instance of another type, which is created along

with the encapsulating instance. Though implementations may vary, the intended effect is that fields

appear in the memory layout in the order they appear in the structure, and embedded sub-structures

are really embedded, i.e. use for their own memory layout the corresponding chunk of memory of the

encapsulating structure.

19

Each field has a type, which is a filter on possible values of the field: these values must have types which

are sub-types of the field type. This is a side-effect; the primary function of the field type is to qualify

the declaration of accessor functions for that type. Embedded structures also have a type, which defines

which structure is embedded. Only other structures may be embedded; it is not possible to embed basic

types (and it would not make much sense either). Embedding is acyclic: a structure may not directly or

indirectly embed itself.

Arrays of fields and arrays of embedded structures can be defined, with a fixed number of elements.

Consider the following example. We suppose that the current namespace is “def”, and that the “bar” type

is defined, or to-be-defined, in that namespace.

struct foo

x int

b1 bar

b2 && bar

c1 16 bar

c2 && 16 bar

end

A structure named def::foo is defined, with the following contents:

• A field called def::x, that may contain values of type std::int or sub-types thereof (but there

cannot be strict sub-types of std::int). Note that the unqualified name “int” is converted by an

active alias to “std::int”, because that alias is part of the export list from the namespace std, which

is imported by default.

• A field called def::b1 for references to instances of def::bar (or sub-types thereof).

• An embedded structure of type def::bar, with name def::b2.

• An embedded array of 16 references of type def::bar, with name def::c1.

• An embedded array of 16 embedded sub-structures of type def::bar, with name def::c2.

No two elements of a structure may have the same name, regardless of their respective kinds.

4.4.1 Closing

When first encountered, a structure type is created in an “open” state. This means that its name becomes

known, but the full contents are not yet defined. As long as a structure is open, new fields and embedded

elements (sub-structures, arrays, and arrays of embedded sub-structures) can be added to the structure

20

type. Once the type is closed, no new contentsmay be added. In the example above, def::foo is still open:

new fields and embedded elements could still be added to the structure. The “end” keyword does not

close the structure; it merely exits the syntactic construction that is used to add elements to a structure.

Similarly, the def::bar structure, if not yet defined at this point of the source code, has been automatically

created, in open state and with no initial contents, when the name “def::bar” was first encountered (i.e.

when the field def::b1was defined).2

A structure will be closed in the following circumstances:

• When closed explicitly with a specific function call on the type instance (i.e. the instance of type

“std::type” that represents this type).

• When an instance of the structure is created. Instance creation implies memory allocation, which

needs the layout to be fixed.

• When an encapsulating structure is closed. For a structure to be closed, all the structures it embeds

must first be closed. Since the embedding relationship is acyclic, this process converges.

• When the structure is made part of code being compiled.

Conversely, sub-types and super-types can be added to a closed structure; that is, even after def::foo is

closed, new structures can be defined and made sub-types of def::foo, and def::foo itself can be made

sub-types of other structures; these additions are immediately inherited by existing instances of def::foo.

4.4.2 Instantiation

When a structure type T is defined, a function with the same name is created. That function takes no

parameter, and returns an instance of std::typewhich represents the type T.

A dedicated function std::new takes as parameter a std::type instance, and creates a new instance of the

represented type. The fields of the new instance are set to uninitialized state (except fields of boolean or

modular integer types, which are set to their default false or zero values); this also applies, recursively, to

all embedded elements.

Calling std::new on std::type instances that do not represent structure types triggers an exception.

2
Strictly speaking, the def::bar structure, if created at this point, is in implicit open state; if it was not explicitly defined

at the time def::foo is closed, then an error is reported, under the assumption that a type which was never explicitly defined

anywhere is probably a typing mistake.

21

4.4.3 Accessors

Structure contents can only be inspected and altered through dedicated accessor functions. These special
functions are created when the structure is closed. The accessors use the element names, depending on

the kind of element:

• For a field of name def::x, the functions def::x and def::->x are defined, to read and write values

to the field def::x of an instance, respectively. The accessor def::Z->x clears the field, i.e. sets it to

uninitialized state. The accessor def::x? tests whether the field is initialized or not.

• For an embedded structure of name def::x, one accessor function of name def::x& is defined,

which takes as input a reference to an instance of the encapsulating structure, and returns a refer-

ence to the instance embedded within it.

• For an array of references, with name def::x, the functions def::x@ and def::->x@ read and write

values into the array slot indexed by a given std::int value. Also, def::Z->x@ clears a slot, and

def::x@? tests its initialization status. Finally, def::x* initializes an array instance (of the right

type) to provide an array view of the references.

• For an array of embedded sub-structures, with name def::x, the def::x@& accessor returns a ref-

erence to one of the embedded sub-structures, by std::int index, and def::x* initializes an array

view of the sub-structures.

Fields, and slots in embedded arrays of references, are initially uninitialized. There is nonull value; reading

an uninitialized field triggers a runtime error.

For booleans and modular integers, i.e. the std::iXX and std::uXX types, corresponding fields are always

initialized. Their starting value is false (for booleans) or zero (for modular integers), and the clearing

accessors restore that value. The test accessors (def::x?, def::x@?) then always return true. Note that

plain std::int fields are not in this situation, and can be truly uninitialized.

4.4.4 Extension

A structure may extend another structure; this is a combination of sub-typing and embedding. When

structure B extends the structure A:

• B is defined to be a sub-type of A.

• B embeds an instance of A, under the name of A (that is, the accessor A& is defined, that takes as input

parameter a reference to an instance of B, and returns a reference to the embedded instance of A).

• Accessors for elements of A can be used on an instance of B, and will access the corresponding ele-

ments in the instance of Awhich is embedded in B.

22

Since extension is both embedding and sub-typing, it combines the requirements of both; notably, ex-

tension cannot be done in a closed structure, and the extension relationship is acyclic.

A given structure Bmay directly extend a given structure A only once (this is implied by the fact that the

extended structure is embedded under its own name, and names are unique within structure contents).

However, a structure may extend several other structures. This is a multiple inheritance model, which is

powerful but implies some ambiguous situations. Suppose, for instance, that:

• Structure A has a field named x.

• Structure B extends A.

• Structure C extends A.

• Structure D extends B and C.

In that situation, the x function, which is the read accessor for the field of the same name in A, could be

invoked on an instance of B and on an instance of C. Since D extends B, the accessors that accept an instance

of B will also work on an instance of D. However, the same can be said about the accessors that accept an

instance of C. In fact, since D embeds both a B and a C, and each embeds an A, the structure D indirectly

embeds two instances of A, and it is unclear which one is supposed to be used when reading the field x.

Therefore, invoking x on an instance of D triggers an error.3

It is possible to make an explicit decision, by defining a function called x, attached to type D, which then

selects the instance to use:

: x (D) B& x ;

This snippet reads as follows:

• The “:” token starts the definition of a new function. It is followed by the name of that function

(x).

• The “(D)” expression registers the new function to the type “D”; that is, if a function call for name

x is encountered, and at that time the top element on the stack has type D, then this function shall

be called (and not, in particular, the accessor function which is registered on type A).

• Afterwards follows the function body, which here consists in two successive function calls: B&,

which returns a reference to the sub-structure embedded in D under the name B, and then x. Since

that x call will operate on the B instance returned by B&, it will use the A instance embedded in that

B instance, and not the one embedded in the C instance which is also embedded in D.

3
As we shall see, part of the work of the compiler is to prove that such an error cannot happen in a given piece of code.

23

• The semicolon token (“;”) terminates the function body.

Thus, this new function explicitly chooses B, not C. Since it is registered with type D, which is a sub-type

of A, it will have precedence over the x accessor function defined on A, when invoked over an instance of

D.

Type extension in T1 maps to the Java extension of classes, while sub-typing corresponds to the Java

extension of interfaces. Historically, Java had only classes, and interfaces were added afterwards to

compensate for the lack of multiple inheritance. The Java inheritance has several facets:

• Inheritance of storage: state held in the superclass is also contained in the subclass instance. In

T1, this is done with extension.

• Inheritance of behaviour: methods attached on the superclass also work with subclasses. This

is what sub-typing provides in T1.

4.5 Arrays

Array types are defined on-demand. For a given type T, the type “array of T” has the name:

(T std::array)

(including the parentheses). This name is not a name token, as returned by the lexer; however, as will be

explained in the description of the interpreter, the array type namemimics a sequence of code that, when

processed by the interpreter, yields a reference to the std::type instance that represents the array type.

In fact, the std::array function creates the array type if it does not already exist, and registers all accessor
functions for array instances.

Array instances really are views on a chunk of memory. An instance of the array type, when instantiated
but not initialized, points to nothing, and calling data accessors triggers an exception. An array instance

is populated in basically four ways:

• Make the array instance point to a sequence of values or embedded structures within a given struc-

ture instance. If the sequence of values or embedded structureswas declaredwith the name def::x,

then this is done with the def::x* accessor function.

• Make the array instance point to a locally allocated sequence of values or embedded structures. For

a local name x, this is done by using the x* pseudo-function name.

• Dynamically allocate a newmemory chunk, with a specified length. When dynamic memory allo-

cation is supported, this is done with the std::make function.

24

• Initialize the array instance as a sub-array of another array instance. The sub-arraymust be entirely

contained within the source array. This is done with the std::sub function. An array instance can

be reinitialized as a sub-array of itself with std::subself (which is just a shorthand for std::sub

with the instance used for both operands).

There is thus always an indirection layer when accessingmemory chunks. Memory chunks themselves are

not objects, i.e. they cannot be accessed directly, anddonot have aT1 type. Native code called fromT1 can

obtain a direct pointer to the data, subject to some caveats (in particular, objectsmaybemoved inmemory

by the garbage collector, if used; and locally allocated objects cease to exist when the owner function

returns): T1memory safety guarantees that all array accesses are “safe” (e.g. out-of-bounds accesses trigger

a runtime error, and all reachable objects are maintained in memory to avoid dangling pointers), but

native code can bypass such safety features.

The Go language has arrays and slices. An array is a sequence of value, and a slice is a view on such

a sequence. Most operations that work on arrays also work on slices. In T1, the Go arrays become

“chunks of memory” and are not directly accessible; the T1 “arrays” are equivalent to the Go slices.

Thus, a T1 array type can be thought of as a structure with three fields: pointer to the actual object

that contains the data, offset and length of the chunk within that hidden object. There is no notion of

“capacity” as in Go (T1 arrays are not intrinsically growable).

An “array of T” is an array of references (to elements of type T, or sub-types thereof). A newly created

memory chunkwill have all slots uninitialized (or set to false or zero, for booleans andmodular integers).

The following accessor functions are defined:

• std::make dynamically allocates a new memory chunk, and initializes the array instance to point

to that chunk.

• std::sub initializes an array as a view of a chunk of another array. The source arraymust have been

initialized.

• std::subselfmerely duplicates the argument, then calls std::sub.

• std::init? returns true if the array instance was initialized, false otherwise. If the array instance

was not initialized, then calls to the other functions below will trigger a runtime error.

• std::length returns the length of the array (number of elements).

• std::@ and std::->@ read and write a value from an array slot or to an array slot, respectively, in-

dexed by an std::int value. Array indexes start at zero.

• std::Z->@ clears an array slot, and std::@? returns its initialization status. For an array of booleans

or modular integers, clearing a slot means setting it to false or zero, and std::@? always returns

true.

25

Types for arrays of embedded structures can also be obtained with std::array&. The expression:

(T std::array&)

will return an array type that, when instantiated and initialized, is a view to a sequence of contiguously

allocated instances of T. For such an array, the accessors that use or return references (std::@, std::->@,

std::Z->@ and std::@?) are not defined; instead, the accessor std::@& returns a reference to one of the

structures embedded in the array.

Any other type can present an array-like interface by defining the appropriate methods. It shall be noted

that support for the std::sub function implies that any array-like type must be able to present some of

its contents in a contiguous sequence in memory.

The main idea behind arrays-as-views is to make it so that any function that can work on arrays will

also work on a sub-array. In practical Java or C# code that processes binary data (e.g. I/O code), several

methods are often needed, e.g. a write() that takes as parameter an array of bytes, and another write()

method that takes as parameters an array of bytes, a start offset and a length. Array views are meant to

avoid these multiple methods. Moreover, they allow user-defined types with array-like interfaces to be

used instead (e.g. a growable vector of bytes).

4.6 Generics

The on-demand creation of array types is an example of how generic types are managed in T1. In full

generality, container types are meant to be created with metaprogramming. For instance, growable array

types are created with std::list. The following sequence of code:

(u8 list)

will return an std::type instance that represents growable arrays of bytes. This is a normal structure type

(albeit with a name that is not a qualified name token), and the new function on that type instance will

return a new growable array of bytes with an initial size of zero. Each growable array type is a sub-type of

the corresponding array type, and offers the relevant accessor functions, as well as some extra functions

to append or remove elements.

Syntactic facilities are made available to users, in order to define their own generic types. This is not

restricted to making new types parametrized by other types; this is more an expression that source code

can define functions and invoke them during the interpretation itself, to process further source code and

define other functions in arbitrary ways.

26

In Java, an importantpoint of generics is that they impact the type analysis, but donot createnew types:

ArrayList<String> and ArrayList<Date>bothuse the same Class instance (their respective getClass()

methods return the same object), and cannot be distinguished from each other at runtime. This is an

historical consequence of generics being added only relatively late in the language (for Java 5). The

generics are handled as an extra layer at compile-time that is used to avoid having the developer make

explicit casts and risk the dreaded ClassCastException.

Conversely, in C#, List<string> and List<DateTime> are distinct types with distinct runtime Type in-

stances (as returned by GetType()). The C# compiler analyzes the source code tomake sure that, when

replacing the type parameters with actual types (that comply with the expressed restrictions on the

type parameters), the resulting code will still be valid; but the runtime machine will create as many

distinct types as necessary. T1 works similary to C#, minus the initial abstract analysis: in T1, we do

not really care whether things would work with some large categories of types, but whether they will
work with the types that the source code actually uses.

27

5 Functions

Every piece of code inT1 is a function. A function has a name (which is a character string) and is registered;
the registration is what makes the function callable. Several functions may have the same name, but will

then differ by the types under which they are registered.

5.1 Runtime Model

Functionparameters, and returned values, are exchangedon a stack. The stack contains only values, which
are references. Every function extracts the parameters it needs from the stack, andpushes back its returned

values on the stack. This inherently allows functions to return several values.

A function, when invoked, has an activation context, which is traditionally called a stack frame. This is
disjoint from the stack described above. Implementations may use a stack structure to allocate activation

contexts; in that case, that stack structure is often called the “system stack”, while the normal stack for

values is called the “data stack”. Here, we will strive the avoid the confusion by using the expression

“activation context”, and reserving the term “stack” for the data stack.

The activation context is a transient memory area that will contain the local variables for the function,

and may save the current execution point for the function. When a function calls another function, the

current instruction pointer is saved in the function activation context, and a new activation context is

created for the called function; when that called function returns, its activation context is released, and

the instruction pointer is restored from the activation context of the caller. Exactly how this happens is

an implementation detail.

Local variables are slots that can receive values; during translation of the source code, local variables have

names, which allows source code to issue read and write instructions for these variables.

In Forth, the system stack is explicit, with words R> and >R to move values from the system to the data

stack, and back. Since some tasks may require more complicated data movements (the usual example

is adding tridimensional vectors together), Forth also defines local variables, which are usually located

on the system stack. Local variable names are translated at compilation time into depths on the system

stack, whichmeans that local variables don’t interact well, or at all, with facilities that access the system

stack, such as explicit words (R> and its ilk...), or loop counters. Thus, a function may use the system

stack explicitly, or use local variables, but should not try to mix both.

For T1, which is not encumbered by compatibility with existing legacy code, it seems simpler to avoid

the complications and normalize on a single system. Thus, local variables have been chosen, and the

system stack is not made visible to user code, except as the “activation context” abstraction.

Locally allocated instances are an extension of local variables: these are object instances that are part of the
activation context. This corresponds to automatic variables in C or C++; arrays of references or embed-

ded structures can be obtained that way. These locally allocated instances are nominally destroyed when

28

the owner function exits. T1 does not have destructors (in the C++ sense) or finalizers (in the Java sense),

thus the notion of “destruction” really means memory deallocation. During interpretation, the garbage

collector is used for such instances, meaning that local allocation is not different from normal heap allo-

cation. In compiled code, allocation is really done in the activation context, and has some restrictions so

that memory safety is maintained in all its facets (notably guaranteed maximum stack growth): the size

of such instances must be known at compile-time, and instances shall not “escape” to outer contexts, i.e.

remain reachable once the owner function has returned.

A typical use for stack allocation is creation of an array view instance to designate a chunk of an array

provided by a calling function, for purposes of using that new array view instance as parameter to

another nested function. Such operations should be doable even when compiling for targets that do

not support dynamic memory allocation. Another use is assembly of a small character string, e.g. for

immediate display.

5.2 Function Invocation

The only way to invoke a function is by name. Function names may be arbitrary; syntactically, a name

token is used, and unqualified names are translated to qualified names by the parser, thus most function

calls should use qualified names.

To be callable, a function must be registered. A function registration includes its name, and parameter

types. For instance, this code defines and registers a function:

: foo (int string)

Here goes the function body

If the current namespace is def, then the function is registered under the name def::foo and with two

parameter types, std::int and std::string. The intent is that if some code calls the function “def::foo”,

and at that exact time, the runtime types of the top two stack elements are std::int and std:string,

respectively, then the function defined above shall be the one to be called. Types are provided in “stack

order”, i.e. the rightmost element is the top-of-stack.

The function invocation process works in the following way:

• The function invocation uses a specific name; only functions registered under that exact name are

considered.

• A set of all matching functions is defined: these are all the functions (with the correct invocation
name) forwhich the registeredparameter typesmatch the runtime types of the corresponding stack

elements at call time. E.g. in the example above, that function def::foo is a matching function if

29

and only if the top stack element has type std::string or a sub-type thereof, and the stack element

immediately below has type std::int or a sub-type thereof.4

• The matching functions are ordered by precision. Let f be a function registered with parameter
types rm, rm−1, ...r1 (in stack order, r1 is top-of-stack), and g be a function registeredwith parameter
types sn, sn−1, ...s1. f will be said to bemore precise than g if and only if all of the following hold:

– m ≥ n (i.e. f is registered with at least as many parameter types as g)
– For all 1 ≤ i ≤ n, type ri is a sub-type of si.

• If one of thematching functions is more precise than all othermatching functions, then that func-

tion is called. Otherwise, an error occurs.

The following important points must be noticed:

• Precision order is partial. Two given functions are not necessarily comparable, i.e. neither being

“more precise” than the other. The invocation process does not require that allmatching functions

be comparable to each other, but that one can be compared to all others, and found to be more

precise than all others.

• A failure will be reported if there is no matching function, but also if there are several and none is

more precise than all the others.

• Since sub-typing is acyclic (except that every type is deemed to be a sub-type of itself), the only way

for two functions f and g to be such that f is more precise than g and g is more precise than f at
the same time, is to have f and g registered with the exact same parameter types. This situation
is explicitly forbidden: any attempt at registering a function with the same name and parameter

types as an already registered function triggers an error.

• If a function is registered with n parameter types, and the stack contains fewer than n elements at
call time, then that function is not a matching function.

• The parameter types used for registration do not necessarily exhaust all the actual function pa-

rameters. A function registered with two parameter types may use more than two parameters.

Moreover, registration says nothing about how the number and types of values a function may

return (i.e. leave on the stack when exiting).

This process works best when registered functions use the same patterns. For instance, it is expected that

most functions in a given applicationwill work like ordinarymethods as in classicOOP, i.e. be dispatched

based on the type of a single parameter, which will be “the object on which the method is invoked”. To

allow functions to be used without undue collisions, even if the same names are used, it is best if all

such method-like functions are registered such that the owner object is the top-of-stack (i.e. rightmost

parameter in the list).

4
In that specific case, std::int cannot have sub-types, but std::string can.

30

5.3 Immediate Functions

An immediate function is a function which is registered with no parameter types, and a special “immedi-
ate” flag. The role of immediate functions is to be invoked as soon as they are encountered in the source

code, during interpretation; this is how additional syntax is defined.

31

6 Interpretation Syntax

Interpretation is the process during which source code is translated into instructions to execute. The

source code may itself trigger the immediate execution of the functions which it just defined; they then

run in the context of the interpreter. Compilation is a separate step that may optionally occur when trig-
gered by the interpreted code, or implicitly at the end of interpretation, or not at all; this is covered in a

later section.

The source code syntax is defined in terms of interpreter behaviour. Like in Forth, there is no formal

syntax that is parsed into a tree; instead, the main interpreter is a simple loop, which is then extended by

immediate functions, which are functions that are executed immediately when their name is encountered,
and interactwith the source stream to implement all extra syntax. User code can define its own immediate

functions, and thereby process the source code in arbitrarily extensible ways.

6.1 Function Building

At any point, the interpreter is building a function, i.e. accumulating instructions into an as-yet incom-
plete function. Building contexts nest: at any time, a new building context may be opened; the previous

one will be restored when the new context is closed. Closing the context yields the function.

Some building contexts are said to be automatic: whenever some instructions have been accumulated

in an automatic context and there is no outstanding flow control structure, the context is closed (which

creates the corresponding function), cleared, and reopened; the function which was just created is then

executed.

For a non-automatic building context, the new function is registered as soon as it is created. For an auto-

matic building context, the new function is not registered and does not have a name; it is executed right

away, then discarded. Note that the automatic context is cleared and reopened before running the newly
created function: this allows that function to populate the building context with new function elements.

In Forth, the interactive system has two states, “interpretation” and “compilation”. In interpreta-

tion mode, typed words are executed immediately, while in compilation mode, they are recorded in

the currently-built function (“word”, in Forth terminology). The interpretation/compilation duality

complicates the description of the language, in that many words have different semantics depending

on the current state. In plain Forth (not counting some non-standard extensions), states do not stack,

and you cannot define a sub-function within a function. Moreover, flow control structures are not

available in the interpreter.

In T1, the term “compilation” is reserved for a distinct process, described later on. Thus, “interpreta-

tion” is used for all activities related to source code processing. The automatic building contexts are

functionally equivalent to the Forth “interpreter”, except that they allow all flow control structures,

and do not require special semantics.

32

Functions are made of the following formal instructions:

• call: invoke a function with a specific name (normally a qualified name token).

• const: push on the stack a given value (a reference).

• getlocal: push on the stack the value currently held in a specified local variable.

• getlocalindex: push on the stack the value currently held in a specified local variable (among

an array of locals, by index).

• putlocal: pop a value from the stack and write it into a specified local variable.

• putlocalindex: pop a value from the stack and write it into a specified local variable (among an

array of locals, by index).

• reflocal: push on the stack a reference to a locally allocated instance.

• reflocalindex: push on the stack a reference to a locally allocated instance (among an array of

locally allocated instances, by index).

• ret: exit the current function, returning control to the caller.

• jump: unconditional jump to another point in the sequence of instructions (within the same func-

tion).

• jumpif: conditional jump to another point in the sequence of instructions: the top-of-stack is

popped and must be a boolean value; the jump is taken if that value is true.

• jumpifnot: conditional jump to another point in the sequence of instructions: the top-of-stack

is popped and must be a boolean value; the jump is taken if that value is false.

Local elements are statically indexed, i.e. which local variable or instance, within the current activation

context, is used in a putlocal, getlocal or reflocal, is a question which is decided at the time

the instruction is added to the currently built function. For getlocalindex, putlocalindex and

reflocalindex, the location and length of the sequence of local variables or instances are also decided at

function building time; the index is popped from the stack at runtime, and compared with these bounds

to prevent out-of-bounds accesses.

The jump, jumpif and jumpifnot opcodes are together called the “jump opcodes”.

33

6.2 The Interpreter Loop

The interpreter loop is described in pseudo-code as follows:

1. Read the next token from the source code stream. If there is no next token (end of source stream),

exit (the interpretation process is finished).

2. If the token is a numerical constant or a literal string, then add a const opcode to the current

function for that value (for character strings, this implies creating the instance that contains that

string, and using the reference to that new instance as value); then jump to step 6.

3. The token is a name. If the name is unqualified:

(a) If the name matches that of an accessor for a local variable or locally allocated instance, then

the corresponding opcode (getlocal, putlocal...) is added to the current function; then

jump to step 6.

(b) If there is a currently defined alias for that name, then convert the name into the qualified

name to which the alias points.

(c) Otherwise, convert the name to a qualified name by adjoining the current namespace.

4. Thename is qualified. If there is a currently registered immediate functionunder that name, invoke

it immediately, then jump to step 6.

5. Add a call opcode to the current function, for the qualified name.

6. While all of the following hold:

• the current building context is automatic;

• the current building context is not empty;

• the current context does not have outsanding flow control structures;

finalize the current context into a function f , reinitialize the context into a new empty function

builder, and execute the function f .

7. Jump to step 1.

For this description, in step 1, we assume that the source code is a single input stream. In practice, the

interpreter will handle several successive source files, one at a time, with a new interpreter loop for each

file. Building contexts are not conserved across files, so any function whose building has started must be

finished by the end of the same file.

Numerical constants are the two boolean values (true and false), character constants, and number con-

stants. Character constants arewords that start with a backquote character (“`”), while number constants

start with an ASCII digit, or a plus or minus sign followed by an ASCII digit. Literal strings start with

a double-quote character (“"”). The syntax for numerical constants and literal strings was described in

section 2.

34

TODO:The constant parsing process will be made pluggable, so that new arbitrary constant formats

may be defined, normally distinguished by suffix. For instance, when “big integers” are implemented,

they will use numerical constants with a “z” suffix. Similarly, floating-point constants will use a dot

symbol (“.”) and the usual exponent notation. In all generality, there will be a sequence of registered

functions that are invoked in due order until one returns that it could understand the format; the last

one will apply the rules for integer types.

In step 3, a putlocal into local variable x is obtainedwith the name “->x”, without a space between “->”

and “x”. If a space separates both parts, then a putlocalwill also be obtained through amuch different

road, the name “std::->” being itself an immediate function that implements an extended syntax for

writing into local variables.

In step 4, the “immediate” flag is an extra information attached to the functionwhen registered. Anormal

call opcode that targets an immediate function name (i.e. adding a call to the immediate function in

the currently built function, rather than calling the immediate function immediately) can be obtained

with the “quoting function” (', described later).

In step 6, a loop is used because execution of the current function may again add opcodes to the current

automatic context. Note that the context is cleared and reinitialized after finalizing the current function,

but before calling it, precisely so that new opcodes may be added to the context without being discarded.

The call to the built function is direct and does not use the name and lookup process (the function is not

actually registered).

The meaning of “outstanding flow control” will be explained in section 6.5.

6.3 Nested Interpreter

While a given interpreter loop can work over nested building contexts, a common pattern in the T1 syn-

tactic constructions is the use of a nested interpreter loop. This is normally triggered by the opening

parenthesis token (“(”):

• A new builder context is created and opened. This is an automatic context, i.e. with immediate

execution of instructions.

• A new, empty data stack is created.

• The nested loop runs until it reaches a closing parenthesis token (“)”), using the new data stack. If

the end of the source stream is reached before obtaining that closing parenthesis, an error is raised.

• When the nested loop exits, the caller obtains the contents of the data stack which was created for

the nested loop. If, at that point, the current builder context is not the automatic context that was

created for the nested interpreter, or that context is not empty (because of an outstanding flow

35

control structure), then an error is raised. Otherwise, that context is removed, and the previous

context, which was active when the opening parenthesis was encountered, is restored.

One case is when the interpreter loop encounters the opening paranthesis in its normal processing loop,

at step 3 (specifically, when after applying aliases, the qualified name is “std::(”). In that case, a nested

interpreter loop is launched, in the conditions described above. When that loop exits, the contents of its

dedicated data stack are used for that many const opcodes added to the current builder context.

Other uses of a similar construction are for function and type declarations.

6.4 Function Declaration

To declare (and define) a new function, the “:” function is used. Here is an example:

: fact <export> (u64)

...

The behaviour of “:” is as follows:

1. Get the next token from the source stream; if it is a literal string, then the string contents are the

name under which the function shall be registered; otherwise, it shall be a name token. In the latter

case, if the name is unqualified, then it is converted to a qualified name:

• If there is a defined alias for the name, then the qualified name to which the alias points is

used.

• Otherwise, a qualified name is made by adjoining the current namespace to the parsed raw

name.

2. After the name may follow one or several of the following qualifiers:

• “<export>”: the new function will be added to the export list of the current namespace (see

the section 6.8 for details).

• “<immediate>”: the new function will be registered as immediate when finished building.

Order of appearance is not significant for qualifiers; if the same qualifier is applied several times,

this has the same effect as a single instance of the qualifier. Unknown qualifiers trigger an error.

3. An opening parenthesis (“(”) terminates the list of qualifiers, and starts a new, nested, automatic

building context, as described in section 6.3. The stack contents upon exit of the nested interpreter

loop are then used as the list of parameter types for registration of the new function. If any of the

values is not a type (an instance of “std::type”), then an error is raised.

If the new function is immediate, then the list of types shall be empty (immediate functions are

registered with an empty parameter list); otherwise, an error is raised.

36

4. A new building context is created for the new function. The function name (qualified), flags (ex-

ported, immediate...), and parameter types are stored in that context, and will be used when the

context is closed.

Since a new building context was created, subsequent actions of the interpreter loop will add opcodes to

that builder, hence contributing to the code of that new function. The new function is not registered

until its building context is finalized. This is normally triggered by the immediate function “;”.

The “:” function is immediate, thus allowing the declaration of a new function while another function

is being built (this contrasts with Forth, where nested function declarations are not supported, and “:”

is not immediate, since it is supposed to be invoked only from the interpreter). These nested functions

do not have any scoping hierarchy or similar features: a nested function has the same visibility as any

other, and it cannot access the local variables and instances of the outer function. This feature is mostly

a syntactic convenience.

6.5 Flow Control

The jump opcodes are added with dedicated immediate functions, that use a control-flow stack which is
managed by the builder context. That stack is separate from the data stack. It contains “origins” and

“destinations”:

• An origin represents a jump opcode that has been added to the current builder, but still needs to
be resolved to its destination.

• A destination represents an opcode of any type that may become the target of a jump opcode.

The control-flow stack is a powerful concept imported from Forth. In Forth, it is implementation-

dependent whether the control-flow stack uses the data stack, or is separate; in T1, the control-flow is

separate and bound to the builder context, which avoids any issue with nested function builders.

The concept behind the control-flow stack is that a jump opcode is first added, then resolved; resolution

occurs either when the target destination becomes known, for a forward jump (the target is beyond the
jump, and thus added later on), or when the jump opcode itself is added, for a backward jump (the target
is before the jump, and already present at the time the jump opcode is added):

• An origin is pushed when adding a forward jump.

• An origin is consumed when adding the target for a forward jump.

• A destination is pushed when adding the target for a backward jump.

37

• A destination is consumed when adding a backward jump.

At any time, the builder has a current address, which designates the next opcode that will be added. Thus,
whenever an origin or destination is pushed, it designates the opcode that will be added next.

Consider for instance the classic “if” construction. As per the Forth tradition, it syntactically looks as

follows:

... # some code that pushes a boolean value

if

... # executed if the boolean is true

else

... # executed if the boolean is false

then

This code has two forward jumps:

• a forward jumpifnot at the position of the “if”, to consume the boolean value and skip the first

code chunk if the boolean falue is false; that jump targets the second code chunk, just after the

“else”;

• a forward jump opcode at the position of the “else”, so that after execution of the first code chunk

(when the boolean was true and the jumpifnot was not taken), execution skips to the code that

follows the final “then”.

The behaviour of the three immediate functions is as follows:

• “if”: push the current address as an origin, and add a jumpifnot opcode (thus, the “origin” qual-

ifies that newly added opcode).

• “else”: push the current address as an origin, add a jump opcode, swap the two top elements of

the control-flow stack, and pop the top element (it should be an origin) to resolve it against the

current address.

• “then”: pop the top control-flow stack element (it should be an origin) to resolve it against the

current address.

Thus, the “if” adds an as-yet-unresolved forward jump, which is pushed as an origin on the stack; “else”

adds another forward jump, also pushed as anorigin on the stack, and resolves the first jump to the opcode

that will immediately follow the second forward jump; “then” resolves the second jump opcode.

Since origins and destinations are organized as a stack, this naturally supports nesting flow structures.

A builder is said to have outstanding flow control structures when its control-flow stack is not empty. In

such a case, an automatic builder does not finalizes itself.

38

The use of the control-flow stack to decidewhether an automatic builder context finalizes and executes

the current function or not, allows the use of flow control structures in code meant for immediate

execution. This contrasts with Forth, where (normally) you cannot use flow control in “interpreter

mode”.

When a function builder is finalized, its control-flow stack must be empty, otherwise an error is raised.

Also, all jump opcodes must have been resolved. Normally, resolution is done by consuming items on

the control-flow stack; however, since items on the control-flow stack can be explicitly duplicated and

dropped, the two conditions “stack is empty” and “all jumps are resolved” are not necessarily synony-

mous.

All functions endwith an implicit ret opcode. Thus, if the current address was used to resolve a forward

jump, but no opcode was added afterwards, the jump targets that implicit ret.

6.6 Type Declarations

A structure type is definedwith the std::struct immediate function. This function parses the new struc-

ture name, and then the structure fields and embedded sub-structures. Here is an example of such a

declaration:

struct foo <export>

x int # reference field of type std::int

vx 12 u8 # embedded array of 12 std::u8 values

p bar # reference field of type def::bar

q && bar # embedded structure of type def::bar

&& qux # def::foo extends def::qux

a (i32 array) # reference field of type (std::i32 std::array)

b && 5 (int list) # embedded array of 5 instances of (std::int std::list)

end

The line breaks and indentation are not significant, and have been set for clarity of the source code only.

The comments (starting with “#”) are similarly not significant.

The example above illustrates the characteristics of the type declaration syntax:

• Elements are declared with the element name, followed by its type.

• If an integer constant lies between the element name and the type, then the element is an embedded

array.

• The special name “&&” is used to embed sub-structures. It can be combined with an integer for an

embedded array of embedded sub-structures.

39

• If the element name ismissing, and the “&&” special name appears where a namewas expected, then

this is a type extension, which combines embedding and sub-typing. The name of the embedded

class is also used as the element name.

• When an element type is expected, an opening parenthesis can be used, to create a nested inter-

preter loop that evaluates to the std::type instance to use.

The behaviour of “std::struct” is as follows:

1. Parse the next token from the stream. If it is a literal string, then the string contents are the type

name; otherwise, the next token shall be a name. In the latter case, if the name is not qualified, then

it is converted to a qualified name by applying the currently defined aliases, or adding the current

namespace if none of the current aliases applies.

2. Get the type that currently has the specified name. If there is no such type, a new structure type

is declared and used. If the type exists but is closed, then an error is raised; otherwise, the existing

type will be used.

3. If the next token from the stream is the name “<export>”, then the type function (the function

that returns the “std::type” instance corresponding to the new type) will be marked as exported

(see section 6.8 for details); otherwise, the next token is pushed back onto the stream, to be read

again at the next step.

4. Parse the next token t from the stream. If that token t is the name “end”, then the type declaration
stops, and the immediate function “std::struct” returns. Note that the type is not closed.

5. If the token t is the name “&&”, then this is an extension:

(a) A type reference is parsed. Thismust be a single type instanceT , with no integer count. Type
reference parsing is described later.

(b) A new element is added to the current structure, using the type T , with the name of T as

element name. Then go to step 4.

6. The token t must be a name. If that name is unqualified, then it is converted to a qualified name
n by using the current aliases (if applicable), or the current namespace. Otherwise, n is set to be
equal to t.

7. If the next token is the name “&&”, then that token is parsed (i.e. discarded from the input stream),

and the new element will be an embedded sub-structure, or an embedded array of embedded sub-

structures; otherwise, the next token is left on the input stream for the next step, and the element

will be a field or an embedded array of fields.

8. A type reference is parsed. This may be either a type instance T , or a pair consisting of an integer
value x followed by a type instanceT . In the latter case, an embedded array of x elements is defined;

40

the value xmust be greater than zero (otherwise, an error is raised). The typeT applies to the new

element (as type of the field, or the embedded structure, or the embedded array element values or

embedded structures, depending on the presence of the integer x and the initial “&&” token).

9. Go to step 4.

Parsing a type reference is a sub-process that behaves as follows:

1. Start with an empty list of values. “Adding to the list” means appending a new value at the end of

the list.

2. Get the next token t. If that token is a numerical constant, then it shall be of type “std::int”

(otherwise, an error is raised); that value is added to the list, then the process loops to step 2.

3. If t is an opening parenthesis (“(”), then a nested interpreter loop is executed, as specified in sec-
tion 6.3; the output contents of the data stack of that loop are then examined:

• If the nested stack contains only std::int values, then these values are added to the list in

stack order (top-of-stack is added last); then loop to step 2.

• If the nested stack contains zero, one ormore std::int values, followed by a single std::type

instance (as the top-of-stack), then these values are added to the list in stack order; then jump

to step 6.

• Otherwise, the stack contents are not valid, and an error is raised.

4. If t is a literal string, then the string contents are used as type name n. Otherwise, t shall be a name;
that name is used for n (converted to a qualified name with the current aliases and namespace, if
necessary).

5. The type of namen is added to the list. If that type does not exist, then a new empty, open structure

of name n is created, and its std::type instance is used.

6. The list contents are returned.

By construction, the parsing of a type reference can only return a std::type instance, preceded by zero,

one or more std::int values.

TODO:Allowmulti-dimensional arrays. The type parsingmechanism can returnmore than one inte-

ger value. It is unclear whether multidimensional arrays are really a good idea, though: they are merely

a syntactic shortcut for computing the index as a multiplication and an addition, since all dimensions

are fixed (no “jagged arrays”). Defining multi-dimensional arrays would require making special acces-

sor names, e.g. “v@@” to make it syntactically explicit that two index values are expected.

41

The type parsing mechanism allows the use of generics. Consider the two following element declara-

tions, which have similar effects:

x "(std::u8 std::list)"

y (u8 list)

In the first case (element x), the explicit name of the “growable array of bytes” type is used, while in

the second case (element y), a nested interpreter loop is used; that loop will first call the std::u8 func-

tion (which pushes the std::type instance of unsigned integers modulo 28), then call the std::list

function, which will use the std::type instance on the stack as parameter for creating the std::type

instance for the growable array of bytes.

The second syntax is easier to use, because the nested interpreter loop mechanics will include the au-

tomatic qualification (“u8” is converted to “std::u8” as per the aliases imported from namespace std)

and be lenient about whitespace, whereas the use of the literal string for x requires using the exact type

name.

Moreover, using the nested interpreter loop is also more robust: the call to std::list creates the type

on demand, and, in particular, also creates and registers all functions that operate on growable vectors

of bytes. The syntax with a literal string does not perform this task, and thus relies on other construc-

tions in the source code to ensure that the said functions exist.

6.7 Local Variables And Instances

Local variables are slots that can receive a value (i.e. a reference) and that existwithin the activation context
of a function; they disappear when the function exits. Similarly, local instances are object instances that
are allocated when a function activation context is created, and meant to be released when the function

exits.

The generic syntax for creating local variables and instances mimics that of the declaration of types. It

starts with the local immediate function:

local

x int # reference field of type std::int

vx 12 u8 # embedded array of 12 std::u8 values

p bar # reference field of type def::bar

q && bar # embedded structure of type def::bar

a (i32 array) # reference field of type (std::i32 std::array)

b && 5 (int list) # embedded array of 5 instances of (std::int std::list)

end

For each named element, accessor names are created. These names are recognized by the interpreter loop

42

(see section 6.2) when building the function, and converted to the appropriate opcodes. Such names

do not exist beyond function building, are not bound to any namespace, and cannot be aliases (they are

matched before applying aliases and namespaces). These names are the following:

• For a field of name x:

– x returns the current contents of the field.

– ->xwrites a value into the field.

• For an embedded structure of name x:

– x& returns a reference to the structure.

• For an embedded array of references of name x:

– x@ reads a reference value, using an index (of type std::int).

– ->x@writes a reference value, using an index (of type std::int).

– x* initializes an array instance (of the right type) to provide an array view of the array.

• For an embedded array of embedded structures of name x:

– x@& returns a reference to one of the embedded structures, using an index (of type std::int).

– x* initializes an array instance (of the right type) to provide an array view of the array.

Several local declarations may exist within a function, provided that no local name is reused within that

function.

There is no smaller scope than a function. When a local variable or instance is declared, its name becomes

usable until the end of the function building, but the corresponding variable or instance is created when

the function activation context is created, i.e. upon function entry.

Local variables and instances are accessible only within the function in which they were declared. In

particular, if a new functionbuilder is openedwithout closing the current builder, the syntactically nested

function builder is separated from the outer function; it does not have any access to the outer function’s

local variables and instances, and itmay create its own local variables and instanceswithout any restriction

on types and names. The “nesting” feature does not have any significance for the built functions.

Since accessor names are resolved syntactically, the types associated with local variables are not used for

any registration mechanism. They are still used as filters for write accesses: if a field is declared with type

std::foo, then only references to such a type, or a sub-type thereof, may be written into the field. This is

meant as a way to document intended types for local variable contents. Compliance with such type filters

is verified dynamically by the interpreter (upon each actual write access), and statically by the compiler.

43

When a function is entered, local variables, and local instance fields, are filled with their default values:

booleans are false, small modular integers are zero, and all other types (including std::int fields) are

uninitialized. Reading an uninitialized field triggers an exception. Contrary to structures, no accessor

names are provided to test a local variable for initialization, or to reset it to uninitialized state: the

intent of local variables is to never be read while still uninitialized, and the compiler will refuse to

compile functions for which it cannot prove that local variables are never read before being written.

This is meant to allow formore optimized usage of local variables, without tests for uninitialized state,

at least in compiled functions. This also mimics the behaviour of both Java and C# compilers.

Since references to local instances can be obtained, it is possible to access such instances after the activation

context inwhich theywere created has been destroyed. This is permitted in the interpreter (which implies

that such local instances may actually be heap-allocated). However, the compiler enforces escape analysis

to make sure that such survival does not happen, allowing local instances to be truly allocated within the

activation context.

An alternate syntax for declaring local variables uses the immediate function std::{ (note that the open-

ing brace “{” is a special character for the lexer, and thus a name by itself). The folowing:

{a b c}

declares three local variables of names “a”, “b” and “c”, respectively. They have type “std::object”, i.e.

can accept any value (reference), and are initially uninitialized.

The special immediate function “std::->” can be used towrite to several local variables at once, or even to

combine declaration and initialization. When that function is executed (i.e. when encountered in source

code, since it is immediate):

• If the next token is “{”, then this opens a list of names, ending with the closing token “}”. This

both declares and initializes local variables.

• Otherwise, if the next token is “[”, then this opens a list of names, ending with the closing token

“]”. Thiswrites to several local variables, but does not declare them; the local variablesmust already

exist.

• Otherwise, the next tokenmust be the name of an already declared local variable, and this is a write

to that variable.

When writing to several local variables at once, they are listed in stack order (rightmost is top-of-stack).

The three following constructions thus have identical effect:

Declare and initialize three variables.

->{a b c}

44

Declare three variables, then write to all of them at once.

{a b c} ->[a b c]

Declare three variables, then write to them one at a time.

{a b c} ->c ->b ->a

In the third one, note that “->a” is interpreted as the accessor word that writes to the variable “a”, while

“-> a” would be parsed as the “->” immediate function, that then parses the token “a”, and adds to the

current function the effect of writing to “a” (a putlocal opcode), i.e. the same final outcome.

6.8 Namespaces and Imports

At anypointwhenprocessing source code, there is a current namespacewhich is used to qualify rawnames

for which no active alias was found. The default current namespace is “def”.

The current aliases are a mapping from raw names to qualified names. Such mappings are built one at a

time, andwith import lists. An import list is made of all names defined in a given namespace and declared
“exported”.

The “std::namespace” immediate function changes the current namespace:

Switch the current namespace to "foo"

namespace foo

The namespace function parses the next token, which must be an unqualified name.

When the new current namespace is changed, all the currently defined aliases are cleared, and the import

list for namespace std is loaded.

Aliases are defined with the “std::alias” immediate function. This function parses the next token:

• If the next token is a qualified name n::r, then the alias is for the raw name r to the qualified name

n::r.

• Otherwise, the next token must be a raw name r. The token that follows must then be a qualified

name n::s, and the mapping will be from r to n::s.

Import lists are obtained with the “std::import” immediate function. This function parses the next to-

ken, whichmust be an unqualified name. That name is taken to be that of a namespace, and the contents

of the current list of exported names from that namespace are added to the current list of aliases. Take

45

care that the list of imported names is the one at the time the import clause is processed; names later added

to the import list of that namespace are not automatically imported.

Name collisions are handled with the following rules:

• A defined alias consists in the following:

– A source name: this is the name for which the alias is defined. It is always a raw name.

– A destination name: this is the name to which the alias is set. This name is an arbitrary string,
but is usually a qualified name. Itmay also be the special invalid-name value, which is distinct
from all strings.

– A provenance flag: it ismeant to be set for names that have been set explicitlywith std::alias,
and cleared otherwise.

• When an std::alias clause is used to define an alias for raw name r:

– If there is no currently defined alias for r, then the alias is defined as specified by the clause;

its provenance flag is set.

– Otherwise, if there is a currently defined alias for r, whose provenance flag is cleared, then

the alias’s destination is set to the destination name provided by the std::alias clause, and

its provenance flag is set.

– Otherwise, if the currently defined alias for r, with its provenance flag set, has the same des-

tination name as the one specified by the std::alias clause, then nothing happens.

– Otherwise, the new alias points to a name distinct from the destination of the old alias, and

the old alias has its provenance flag set: in that situation, an error is raised.

• When an std::import clause is used to load an import list, and the import list contains an alias for

a raw name r:

– If there is no currently defined alias for r, then the alias is defined as specified by the clause;

its provenance flag is cleared.

– Otherwise, if there is a currently defined alias for r that points to the same name as the name

defined in the import list, then nothing happens.

– Otherwise, if the currently defined alias for r has its provenance flag set, then nothing hap-

pens.

– Otherwise, the new alias points to a name distinct from the destination of the old alias, and

the old alias has its provenance flag cleared: in that situation, the alias’s destination is set to

invalid-name.

• Whenever an alias is used for raw name r (i.e. the raw name r was encountered in a syntactic con-

struction, and it is to be transformed thanks to the current aliases), and there is a currently defined

alias for rwhose destination is invalid-name, then an error is raised.

46

• The provenance flag has no influence on alias usage.

Import lists are roughly similar to Java’s whole-package imports, e.g. “import java.util.*;”. They

have the same convenience of getting easy access tomany nameswith a single programming clause, but

they also share the same compatibility risks: if an import list is later modified by the source package to

include more exported names, these new names may enter in conflict with other names defined by the

source code or imported from other lists. The mechanism with invalid-name and the provenance flag
is meant to solve such issues along the following principles:

• The developer is supposed to know what happens in her own namespace. Thus, a conflict

between two explicitly defined aliases is a programming error, hence sanctioned immediately.

• Similarly, a collision between an imported alias and an explicitly defined alias is resolved in

favour of the latter: an explicit alias has precedence over an imported alias.

• A collision between two imported aliases is not resolved, but does not trigger an immediate

exception: the import lists are considered tobeoutof reachof thedeveloper, and thusmay incur

collisions that she cannot prevent. However, use of the name on which the collision occurs

becomes ambiguous, and thus triggers an exception.

• Redefining an alias identically is always permitted.

• Order of declaration should not matter.

Ambiguous names (from collisions between import lists) can be resolved with an explicit std::alias

clause, that will take precedence over both import lists.

It is a matter of programming style whether to use import lists or explicit aliases. The import list from

std is always loaded because it would be very inconvenient to write code without (in that respect, it is

similar to OCaml’s “Pervasives” module). Functions from other namespaces may be used with explicit

namespace names, or explicit aliases, or import lists, or any combination thereof.

Existing syntax favours the declaration of “simple aliases” that map a raw name to a qualified version of

the same name; this is what the <export> keyword does when defining a function. Nevertheless, other (to

be defined) API may be used to make aliases that map raw names to arbitrary strings, both explicitly and

through import lists.

6.9 Errors

In all of the previous text, the expression “raising an error” was used many times. An error terminates

execution immediately and is not recoverable. It may include an error code for reporting purposes.

47

There are several models for error handling, notably the following:

• Individual functions may report errors as special values, as in C: for instance, a read() call on

a file descriptor (on Unix-like systems) returns either the number of bytes that have been read,

or the special value -1.

• To avoid the need to put error codes in the same space as values, the result may be wrapped

into a container that retains whether a value or an error was obtained, and additional syntactic

constructions are provided to test for errors and obtain the result; this is how things are done

in Rust.

• In languages where functions can return several values, functions may return the result and an
error code as separate values; this requires a special “no error” error code, that the caller can

easily test, as well as a default value to return along with the error code in case of error. Go uses

this mechanism.

• Errors may be reported through thrown exceptions, as in Java or C#. Activation contexts are

unwinded until a catch mechanism is reached.

All of thesemechanisms are imperfect, in particular on small, constrained systems. Error values require

extra code to receive them, test for them, and, more often that not, propagate error codes up the call

chain. Exceptions tend to allow for a more compact and efficient implementation, in that they keep

error handling out of the main processing; however, catching exceptions implies more complicated

semantics that make code generation harder, and can increase code footprint.

In T1, a cruder but simpler mechanism is used: any error terminates the whole program, or, more ac-

curately, the wholemodule. One of the points of T1 is to allow compact, efficient coroutines; thus, an

application that usesT1 is supposed to be split into severalmodules that act as coroutines to each other.

Eachmodule has its own stack and heap, andmodules communicate with each other only through se-

rialized messages. For instance, in an SSL/TLS library, a module written in T1 could handle X.509

certificate validation; it receives the encoded certificate chain, and returns the validation result (no-

tably the public key from the certificate). Any validation failure then cancels the complete module,

but not the application. In effect, T1 error management is about concentrating handling at module

boundaries. This also maps to a clustering structure in which T1 modules might run on a distributed

system.

48

7 Compilation

Compilation is a step which optionally occurs at the end of interpretation, when T1 is invoked “as a com-
piler”; it can also be triggered explicitly by the source code itself. Compilation takes as input a list of

entry points (specific functions), and produces an executable form of these functions and their transitive

dependencies. This process is meant to fulfill the following:

• Compiled code is small and self-reliant. It can be invoked and run without requiring access to a

bulky runtime system.

• Interpretation features, such as defining types or new functions, are not available in compiled code.

Notably, compiled code cannot access type or function names.

• Compiled output should be amenable to integration within applications written in other lan-

guages, in particular C.

• The compiler offers strong guarantees on the usage of memory resources by compiled code: maxi-

mum data stack depth andmaximum storage area for activation contexts (including local variables

and locally allocated instances) are computed; and dynamicmemory allocation, if supported at all,

can bemade to occur only in a specific, limited area provided by the caller that invokes the compiled

code.

• Compiled code is proven not to trigger any error related to function invocation: whenever a func-

tion is invoked, there is exactly onematching function that is more precise than all other matching

functions; and accessor functions called on instances that extend the structure on which the acces-

sor was defined find an unambiguous instance on which the access is to be performed.

• Similarly, compiled code is proven never to read an uninitialized local variable, to let a reference

to a locally allocated instance escape its activation context, or to attempt to write into a statically

allocated instance.

Compilation can work only on a subset of valid codes; notable among the restrictions is that compiled

code cannot be generally recursive, since such recursion would prevent computing strong bounds on

stack depth.

Banning recursion is controversial, especially since most functional languages instead strive to use re-

cursion to express most of flow control. The two main reasons to forbid recursion in T1 are the fol-

lowing:

• Not allowing recursionmeans that the call tree is finished, which permits the general flow anal-

ysis (described below) to terminate.

• Recursion allocates memory in spaces which are scarce on memory resources. T1 aims at being

useful for small embedded systems that have only a few kilobytes of RAM in total; however,

49

evenonbigger systems, stacks are small. For instance, a typicalmoderndesktop systemor laptop

will have gigabytes of RAM, but the stack allocated for a thread is smaller (8 megabytes by

default on Linux). Common sense dictates that if unbounded memory allocation occurs, it

should not be done in an area which is a thousand times smaller than the heap, and for which

the only detection mechanism for allocation failure is SIGSEGV.

In a future version, tail calls may be implemented, and tail recursion allowed. In a tail call, the acti-
vation context of the caller is released first, and when the callee returns, control is passed back not to

the caller, but the caller’s caller. If a tail call does not imply undue stack growth, then it won’t prevent

computing finite bounds on stack depth, and it should be manageable by flow analysis.

7.1 Flow Analysis And Types

Flow analysis is the central step of compilation. Consider the following code excerpt:

: triple (object)

dup dup + + ;

: main ()

4i32 triple println

"foo" triple println ;

The flow analysis starts with the entry point (main) and an empty stack. Then, after the 4i32 token, the

stack should contain exactly one element of type i32. At that point, the triple function is invoked. There

is exactly one matching function of that name for a stack with one element of type i32, and therefore the

call is unambiguous.

Analysis proceedswith the triple function. Crucially, analysis of main is not finished; it will be continued

when this call to triple is done. Within triple, the calls to dup and + are followed; notably, when the first

+ call is reached, the stack is determined to contain three elements of type i32. When the end of triple

is reached, the stack is back to containing one element of type i32. At that point, flow analysis jumps

back to the caller (main) and can proceed to the next call (println) since it is now known that this call is

potentially reachable (the triple function may return) and also which stack contents to expect at that

time. The call to println is resolved to the function of that name that expects an element of type i32.

Later on, the analysis reaches the second call to triple in the main function. For that one, the stack con-

tains one element of type string5. There is still one matching function of name triple, and this is the

same one as previously (indeed, there’s only one triple function defined in this example, so only that one

may be called). However, the flow analysis of triplewill be done again: everything is done as if that call
was a new one.

5
Strictly speaking, string is merely an alias on (std::u8 std::array), but we will use the name string for the clarity of

the exposition.

50

In that new call to triple, the stack initially contains one string; after the two dup calls, it contains three

string elements; then, the + calls will be resolved to the function that “adds” strings (it concatenates them

into newly heap-allocated string values). That second analysis of triple concludes and returns a single

string. In main, the second println call is resolved to the function of that name that expects one element

of type string (not the same one as the one that expects an i32).

The salient points of this process are the following:

• The triple function has been registeredwith one parameter type, which is generic (objectmatches
all value types). It cannot really be called on values of every type; for instance, it cannot be called

on bool since there is no defined + function that works on bool values. But it does not matter that

the function could in abstracto be invoked on values on which it would not work; what counts is
whether such an invalid call is actually made in the program at hand. The flow analysis determines

that all calls to triplewill work, and that is sufficient.

• Similarly, triple could have been registered with no parameter at all (“: triple ()”). During flow

analysis, the compiler would still have known that at the time the function is invoked, there is a

value on the stack, and the first dup call won’t underflow. Types for function registration are used

only to determine which function is called, not to restrict the actual usage of values on the stack6.

• The fact that each triple call has its own analysis avoids type merging trouble. If both calls were

the same node in the call graph, then the flow analysis would be faced with calling + on a stack

with three elements, each being either a string or an i32. Such a call would not succeed because

there is no + function that can work over a string and an i32; the compiler would reject the code

as making a call which is potentially unsolvable. In this case, duplicating the triple node allows

the flow analysis to keep track of the fact that while all three stack elements at this point may be of

type i32 or string, they all three have the same type, and cross combinations are not possible.

The node duplication means that, as far as flow analysis is concerned, the “call graph” is a call tree.

Duplication of nodes for function calls is what makes all function “generic” in the Java or C# sense.

But since the analysis is done only deductively, i.e. based on what may be on the stack at that point of

the program, there is no need for a syntax to express what type combinations are allowed. Again, T1

does not care whether a given function could work on all input values that may exist in the universe,

only that it would work with what may actually be present on the stack at the time of the call.

Type merging may still occur because of jump opcodes. For instance, consider this function:

: muxprint (object object bool)

if drop else swap drop then println ;

6
It is still good software engineering to register functions with exactly the parameters that it is going to use, if only for

better source code readability.

51

Suppose that the top three elements for a call to muxprint are values of type A, B and bool. In the built

function, the call to println can be reached from two points: this could follow the “swap drop” sequence

(the boolean was false, the value of type A has been dropped, the stack now contains an object of type

B), or be reached through the jump that is implicit in the else construction. In the latter case, the top of

the stack will be a value of type A.

Thus, flow analysis will consider that when println is called, the stack may contain one element which

is of type A or of type B. The call will be accepted only if it is solvable in both cases. If the two cases are

solvable, but lead to distinct functions, then both functions will be analyzed, each with its own context.

For the purposes of flow analysis, all individual conditional jump opcodes are considered independent of

each other. This means that the following cannot be compiled successfully:

: foo (bool)

->{x} {y}

x if 42 ->y then

x if y println then ;

Indeed, this function uses the provided input value (stored in the local variable x) to decide whether to

put the integer 42 in the variable y (first “if” clause), and whether to print the contents of the y variable

(second “if” clause). The compiler does not notice that both jumps use the same control value; instead,

it considers that the jumps are independant of each other, and, in particular, the first jumpmay be taken,

thus skipping the initialization of y, while the second would not, leading to the read of the potentially

uninitialized variable y.

The idea that conditional jumps are independent of each other has been borrowed from Java. Indeed,

with the equivalent Java code:

static void foo(boolean x) {

int y;

if (x) {

y = 42;

}

if (x) {

System.out.println(y);

}

}

Java compilation fails with the error “variable ymight not have been initialized”.

This is not considered a great restriction. In practical Java development, that kind of error occurs

mostly when adding debug code to an existing function, activated with a global “debug” flag.

52

The notion of type used for the flow analysis is the combination of the std::type for the value, and the

object allocation point. An object allocation point is one of the following:

• static allocation (conceptually, in ROM, thus non-modifiable);

• the heap;

• a specific local slot within the activation context of a specific function call, i.e. a node in the call

tree.

This information is the basis for the escape analysis (making sure that instances allocated in activation

contexts are not reachable after the called function has returned) and for the verification of constant ob-

jects (static allocation corresponds to const definitions in C, and thus normally end up in non-modifiable

memory).

Apart from the stack contents, the types of local variables at any point in a given function (for a given

activation context, i.e. within a node in the call tree), is also maintained. A special nil type is used for

uninitialized local variables; any attempt at reading nil is rejected at compilation time.

Types of values written in object fields are tracked. The container types are distinguished by allocation

point, but all instances with the same allocation point use the same tracking. Therefore, writing a value

of type int in the field x of a heap-allocated object of type T implies that, from the point of view of the

flow analyzer, all objects of type T that are heap-allocated may contain, at all times, a value of type int in

their x field.

Note that any merging may enrich the list of possible types in a stack slot, local variable or object field,

and trigger further flow analysis for all parts of the call tree that depend on it.

7.2 Constraints

The following constraints are enforced by the flow analyzer; any violation implies a compilation failure:

• The call tree must be finished.

• At every merge point, the stack depth is the same for all code paths leading to that point.

• Nomerge between basic types (booleans and small modular integers), or between a basic type and

a non-basic type, may occur, whether on the stack, in local variables, or within fields of a structure

type.

• When a local variable is read, it may not contain nil (which marks the uninitialized state).

• No write to a field of an object with static allocation may happen.

53

• Whenever a value has an allocation point tied to a given nodeN1 in the call tree, and it is written in

a field of an other object, then that other object must have an allocation point tied to a nodeN2,

andN2 must be either equal toN1, or a descendant ofN2 in the call tree.

• When a function returns, the stack contents must not contain any value whose allocation point is

the node of that function in the call tree.

• For every function call, all possible combinations of types on the stack at that point must be solv-

able, i.e. lead to a single most precise function call.

• When a field accessor is invoked, the field must be unambiguously located for all possible types of

the owner object.

Note that some special functions do not return (e.g. std::fail). This is detected during flow analysis.

As such, some opcodes may be unreachable; these will be trimmed during code generation.

Each basic type may be merged only with itself because basic types have specific storage requirements,

that may differ from those of “normal” values (which are pointers). In the generated code, values of

basic types may be passed around on a different, dedicated stack, or different registers. Similarly, an

object field declared with type std::u8 should correspond to a one-byte slot in the memory layout; a

feature of T1 is that object layouts are predictable, so that they can be accessed from C code.

The finiteness of the call tree is enforced with nested call counters: when a node is entered that corre-

sponds to a given function f , the counter for f is incremented; it is decrementedwhen leaving f . If the
counter goes over a given threshold, then compilation stops with an explicit message. This necessarily

detects all infinite trees, since there are only a finite number of functions, each with a finite number of

opcodes: an infinite tree can be obtained only through infinite recursion.

Some finite recursion is still tolerated. This allows for some cases where the same generic function is

used for several levels of a nested structure, but with distinct types that guarantee against unbounded

recursion.

7.3 Code Generation

Code generation occurs after flow analysis has completed successfully. How code is generated depends on

the target type; the compiler may produce portable threaded code, or native code, orWASM, or anything

else. Generated code includes all functions that are part of the call tree; other functions are automatically

excluded.

A generic function merging process occurs during code generation. In the flow analysis, functions were

duplicated: the same piece of codemay yield several distinct nodes in the call tree. When generating code,

these nodes may be merged back. This is subject to some restrictions and subtleties:

54

• Some merge operations may not be feasible. In our example with the triple function, one of

the nodes works on i32 values while the other uses string values. In generated code, these values

use different storage techniques (e.g. stack slots of different size, or different registers), which may

preclude merging.

• Even when function merging is possible, it may be undesirable for performance: for instance,

the unmerged function may have only simple calls (each triple function node calls a single well-

defined + function), while the merged function may need a type-based dynamic dispatch (if the

i32 and string could be merged, the triple function would have to look at the runtime type of

the values to decide which + version to call).

In general, in T1, we aim at code compacity, hence apply merging whenever possible. A future an-

notation will allow to explicitly tag some functions as prohibiting non-trivial merging, i.e. when the

relevant types are not all strictly identical. This would reproduce the trade-offs usually seen in C with

inline functions.

55

	Overview Of T1
	Project Goals
	Main Features
	Memory Model

	Lexing
	Names
	Types
	Sub-Typing
	Basic Types
	Strings
	Structures
	Closing
	Instantiation
	Accessors
	Extension

	Arrays
	Generics

	Functions
	Runtime Model
	Function Invocation
	Immediate Functions

	Interpretation Syntax
	Function Building
	The Interpreter Loop
	Nested Interpreter
	Function Declaration
	Flow Control
	Type Declarations
	Local Variables And Instances
	Namespaces and Imports
	Errors

	Compilation
	Flow Analysis And Types
	Constraints
	Code Generation

